Skip to main content

Advertisement

Log in

Pyrroloquinoline Quinone is a Potent Neuroprotective Nutrient Against 6-Hydroxydopamine-Induced Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Pyrroloquinoline quinone (PQQ), which is an essential nutrient, has been shown to act as an antioxidant. Reactive oxygen species (ROS) are thought to be responsible for neurotoxicity caused by the neurotoxin 6-hydroxydopamine (6-OHDA). In this study, we investigated the ability of PQQ to protect against 6-OHDA-induced neurotoxicity using human neuroblastoma SH-SY5Y. When SH-SY5Y cells were exposed to 6-OHDA in the presence of PQQ, PQQ prevented 6-OHDA-induced cell death and DNA fragmentation. Flow cytometry analysis using the ROS-sensitive fluorescence probe, dihydroethidium, revealed that PQQ reduced elevation of 6-OHDA-induced intracellular ROS. In contrast to PQQ, antioxidant vitamins, ascorbic acid and α-tocopherol, had no protective effect. Moreover, we showed that PQQ effectively scavenged superoxide, compared to the antioxidant vitamins. Therefore, our results suggest the protective effect of PQQ on 6-OHDA-induced neurotoxicity is involved, at least in part, in its function as a scavenger of ROS, especially superoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gallop PM, Paz MA, Fluckiger R, et al (1989) PQQ, the elusive coenzyme. Trends Biochem Sci 14:343–346

    Article  PubMed  CAS  Google Scholar 

  2. Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    PubMed  CAS  Google Scholar 

  3. Kumazawa T, Seno H, Urakami T, et al (1992) Trace levels of pyrroloquinoline quinone in human and rat samples detected by gas chromatography/mass spectrometry. Biochim Biophys Acta 1156:62–66

    PubMed  CAS  Google Scholar 

  4. Killgore J, Smidt C, Duich L, et al (1989) Nutritional importance of pyrroloquinoline quinone. Science 245:850–852

    Article  PubMed  CAS  Google Scholar 

  5. Steinberg FM, Gershwin ME, Rucker RB (1994) Dietary pyrroloquinoline quinone: growth and immune response in BALB/c mice. J Nutr 124:744–753

    PubMed  CAS  Google Scholar 

  6. Zhang Y, Rosenberg PA (2002) The essential nutrient pyrroloquinoline quinone may act as a neuroprotectant by suppressing peroxynitrite formation. Eur J Neurosci 16:1015–1024

    Article  PubMed  Google Scholar 

  7. Zhu BQ, Simonis U, Cecchini G, et al (2006) Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther 11:119–128

    PubMed  CAS  Google Scholar 

  8. Nishigori H, Yasunaga M, Mizumura M, et al (1989) Preventive effects of pyrroloquinoline quinone on formation of cataract and decline of lenticular and hepatic glutathione of developing chick embryo after glucocorticoid treatment. Life Sci 45:593–598

    Article  PubMed  CAS  Google Scholar 

  9. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S38

    Article  PubMed  CAS  Google Scholar 

  10. Sian J, Dexter DT, Lees AJ, et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  11. Cohen G, Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249:2447–2452

    PubMed  CAS  Google Scholar 

  12. Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharmacol 14:633–643

    PubMed  CAS  Google Scholar 

  13. Hastings TG (1995) Enzymatic oxidation of dopamine: the role of prostaglandin H synthase. J Neurochem 64:919–924

    Article  PubMed  CAS  Google Scholar 

  14. Bensadoun JC, Mirochnitchenko O, Inouye M, et al (1998) Attenuation of 6-OHDA-induced neurotoxicity in glutathione peroxidase transgenic mice. Eur J Neurosci 10:3231–3236

    Article  PubMed  CAS  Google Scholar 

  15. Andrew R, Watson DG, Best SA, et al (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18:1175–1177

    Article  PubMed  CAS  Google Scholar 

  16. Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66

    PubMed  CAS  Google Scholar 

  17. Gassen M, Gross A, Youdim MBH (1998) Apomorphine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov Disord 13:242–248

    Article  PubMed  CAS  Google Scholar 

  18. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, et al (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612

    Article  PubMed  CAS  Google Scholar 

  19. Hara H, Ohta M, Ohta K, et al (2003) Apomorphine attenuates 6-hydroxydopamine-induced apoptotic cell death in SH-SY5Y cells. Redox Rep 8:193–197

    Article  PubMed  CAS  Google Scholar 

  20. Hara H, Ohta M, Ohta K, et al (2003) Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Brain Res Mol Brain Res 119:125–131

    Article  PubMed  CAS  Google Scholar 

  21. Munoz FJ, Opazo C, Gil-Gomez G, et al (2002) Vitamin E but not 17beta-estradiol protects against vascular toxicity induced by beta-amyloid wild type and the Dutch amyloid variant. J Neurosci 22:3081–3089

    PubMed  CAS  Google Scholar 

  22. Asanuma M, Hirata H, Cadet JL (1998) Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice. Neuroscience 85:907–917

    Article  PubMed  CAS  Google Scholar 

  23. Choi WS, Yoon SY, Oh TH, et al (1999) Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57:86–94

    Article  PubMed  CAS  Google Scholar 

  24. Barkats M, Millecamps S, Bilang-Bleuel A, et al (2002) Neuronal transfer of the human Cu/Zn superoxide dismutase gene increases the resistance of dopaminergic neurons to 6-hydroxydopamine. J Neurochem 82:101–109

    Article  PubMed  CAS  Google Scholar 

  25. Callio J, Oury TD, Chu CT (2005) Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 280:18536–18542

    Article  PubMed  CAS  Google Scholar 

  26. He K, Nukada H, Urakami T, et al (2003) Antioxidant and pro-oxidant properties of pyrroloquinoline quinone (PQQ): implications for its function in biological systems. Biochem Pharmacol 65:67–74

    Article  PubMed  CAS  Google Scholar 

  27. Jensen FE, Gardner GJ, Williams AP, et al (1994) The putative essential nutrient pyrroloquinoline quinone is neuroprotective in a rodent model of hypoxic/ischemic brain injury. Neuroscience 62:399–406

    Article  PubMed  CAS  Google Scholar 

  28. Zhang Y, Feustel PJ, Kimelberg HK (2006) Neuroprotection by pyrroloquinoline quinone (PQQ) in reversible middle cerebral artery occlusion in the adult rat. Brain Res 1094:200–206

    Article  PubMed  CAS  Google Scholar 

  29. Otero P, Viana M, Herrera E, et al (1997) Antioxidant and prooxidant effects of ascorbic acid, dehydroascorbic acid and flavonoids on LDL submitted to different degrees of oxidation. Free Radic Res 27:619–626

    Article  PubMed  CAS  Google Scholar 

  30. Choi HY, Song JH, Park DK, et al (2000) The effects of ascorbic acid on dopamine-induced death of PC12 cells are dependent on exposure kinetics. Neurosci Lett 296:81–84

    Article  PubMed  CAS  Google Scholar 

  31. Heikkila RE, Cohen G (1973) 6-Hydroxydopamine: evidence for superoxide radical as an oxidative intermediate. Science 181:456–457

    Article  PubMed  CAS  Google Scholar 

  32. Hamagishi Y, Murata S, Kamei H, et al (1990) New biological properties of pyrroloquinoline quinone and its related compounds: inhibition of chemiluminescence, lipid peroxidation and rat paw edema. J Pharmacol Exp Ther 255:980–985

    PubMed  CAS  Google Scholar 

  33. Misra HS, Khairnar NP, Barik A, et al (2004) Pyrroloquinoline-quinone: a reactive oxygen species scavenger in bacteria. FEBS Lett 578:26–30

    Article  PubMed  CAS  Google Scholar 

  34. Urakami T, Yoshida C, Akaike T, et al (1997) Synthesis of monoesters of pyrroloquinoline quinone and imidazopyrroloquinoline, and radical scavenging activities using electron spin resonance in vitro and pharmacological activity in vivo. J Nutr Sci Vitaminol (Tokyo) 43:19–33

    CAS  Google Scholar 

  35. Hara H, Ohta M, Adachi T (2006) Apomorphine protects against 6-hydroxydopamine-induced neuronal cell death through activation of the Nrf2-ARE pathway. J Neurosci Res 84:860–866

    Article  PubMed  CAS  Google Scholar 

  36. Yamaguchi K, Sasano A, Urakami T, et al (1993) Stimulation of nerve growth factor production by pyrroloquinoline quinone and its derivatives in vitro and in vivo. Biosci Biotechnol Biochem 57:1231–1233

    Article  PubMed  CAS  Google Scholar 

  37. Murase K, Hattori A, Kohno M, et al (1993) Stimulation of nerve growth factor synthesis/secretion in mouse astroglial cells by coenzymes. Biochem Mol Biol Int 30:615–621

    PubMed  CAS  Google Scholar 

  38. Aizenman E, Hartnett KA, Zhong C, et al (1992) Interaction of the putative essential nutrient pyrroloquinoline quinone with the N-methyl-d-aspartate receptor redox modulatory site. J Neurosci 12:2362–2369

    PubMed  CAS  Google Scholar 

  39. Naarala J, Nykvist P, Tuomala M, et al (1993) Excitatory amino acid-induced slow biphasic responses of free intracellular calcium in human neuroblastoma cells. FEBS Lett 330:222–226

    Article  PubMed  CAS  Google Scholar 

  40. Sun D, Murali SG (1998) Stimulation of Na+–K+–2Cl cotransporter in neuronal cells by excitatory neurotransmitter glutamate. Am J Physiol 275:C772–C779

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (HHa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Hara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, H., Hiramatsu, H. & Adachi, T. Pyrroloquinoline Quinone is a Potent Neuroprotective Nutrient Against 6-Hydroxydopamine-Induced Neurotoxicity. Neurochem Res 32, 489–495 (2007). https://doi.org/10.1007/s11064-006-9257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9257-x

Keywords

Navigation