Skip to main content
Log in

Guanidinoacetate Inhibits Glutamate Uptake in Rat Striatum of Rats at Different Ages

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate plays a central role in the excitatory synaptic transmission and is important for brain development and functioning. Increased glutamate levels in the synaptic cleft are related to neuronal damage associated with excitotoxicity. Guanidinoacetate methyltransferase (GAMT) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation of guanidinoacetate (GAA) and depletion of creatine. Affected patients present epilepsy and mental retardation whose pathogeny is unclear. In the present study we investigated the in vitro and in vivo (intrastriatal administration) effect of GAA on glutamate uptake by striatum slices of developing and adult rats. Results showed that GAA significantly inhibited in vitro glutamate uptake at 50 μM and 100 μM in all ages tested. We also tested the effect of taurine on the inhibition of glutamate uptake caused by GAA. Taurine significantly attenuated the inhibitory effect caused by 50 μM GAA, but did not alter that provoked by 100 μM GAA. Furthermore, intrastriatal administration of a solution of 30 μM GAA (0.06 nmol/striatum) significantly inhibited glutamate uptake by rat striatum slices. Our results suggest that the inhibition of striatal glutamate uptake caused by GAA might be involved in the neuropathology and especially in the acute neurological features present in patients with GAMT-deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Von Figura K, Hanefeld F, Isbrandt D, Stöckler-Ipsiroglu S (2001) Guanidinoacetate methyltransferase deficiency. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1897–1908

    Google Scholar 

  2. Leuzzi V, Bianchi MC, Tosetti M, Carducci C, Cerquiglini CA, Cioni G, Antonozzi I (2000) Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation). Neurology 55:1407–1409

    PubMed  CAS  Google Scholar 

  3. Schulze A, Ebinger F, Rating D, Mayaetepek E (2001) Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 74:413–419

    Article  PubMed  CAS  Google Scholar 

  4. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  5. Segovia G, Porras A, Del Arco F, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122:1–29

    Article  PubMed  CAS  Google Scholar 

  6. Maragakis NJ, Rothstein JD (2004) Glutamate trasporters: animal models to neurologic disease. Neurobiol Dis 15:461–473

    Article  PubMed  CAS  Google Scholar 

  7. Friedler RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Méd 48:1365–1375

    Article  Google Scholar 

  8. Chen Y, Swnason RA (2003) Astrocytes and brain injury. J Crerbr Blood F Met 23:137–149

    Article  Google Scholar 

  9. Della Corte L, Crichton RR, Duburs G, Nolan K, Tipton KF, Tirzitis G, Ward RJ (2002) The use of taurine analogues to investigate taurine functions and their potential therapeutic applications. Amino Acids 23:367–379

    Article  PubMed  CAS  Google Scholar 

  10. Gupta RC, Win T, Bittner S (2005) Taurine analogues; a new class of therapeutics: retrospect and prospects. Curr Med Chem 12:2021–2039

    Article  PubMed  CAS  Google Scholar 

  11. Wang JX, Li Y, Zhang LK, Zhao J, Pang YZ, Tang CS, Zhang J (2005) Taurine inhibits ischemia/reperfusion-induced compartment syndrome in rabbits. Acta Pharmacol Sin 26:821–827

    Article  PubMed  CAS  Google Scholar 

  12. Zugno AI, Franzon R, Chiarani F, Bavaresco CS, Wannmacher CMD, Wajner M, Wyse ATS (2004) Evaluation of the mechanism underlying the inhibitory effect of guanidinoacetate on brain Na+, K+-ATPase activity. Int J Devl Neuroscience 22:191–196

    Article  CAS  Google Scholar 

  13. Qi B, Yamagami T, Naruse Y, Kagamimori S (1995) Effects of taurine on depletion of erythrocyte membrane Na+, K+-ATPase activity due to ozone exposure or cholesterol enrichment. J Nutr Sci Vitaminol 41:627–634

    PubMed  CAS  Google Scholar 

  14. Folbergrova J, Haugvicova R, Mares P (2001) Attenuation of seizures induced by homocysteic acid in immature rats by metabotropic glutamate group II and group III receptor agonosts. Brain Res 980:120–129

    Article  Google Scholar 

  15. Zugno AI, Scherer EBS, Schuck PF, Oliveiram DL, Wofchuk S, Wannmacher CMD, Wajner M, Wyse ATS (2006) Intrastriatal administration of guanidinoacetate inhibits Na+, K+-ATPase and creatine kinase activities in rat striatum. Met Brain Dis (in press)

  16. Thomazi AP, Godinho GFRS, Rodrigues JM, Schwalm FD, Frizzo MES, Moriguchi E, Souza DO, Wofchuk ST (2004) Ontogenetic profile of glutamate uptake in brain structures slices from rats: sensitivity to guanosine. Mech Ageing and Dev 125:475–481

    Article  CAS  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  18. Saransaari P, Oja SS (2000) Taurine and neural cell damage. Amino acids 19:509–526

    Article  PubMed  CAS  Google Scholar 

  19. Maragakis NJ, Rothstein JD (2001) Glutamate transporters in neurologic disease. Arch Neurol 58:365–370

    Article  PubMed  CAS  Google Scholar 

  20. Mori A, Kohno M, Masumizu T, Nosa Y, Packer I (1996) Guanidino compounds generate reactive oxygen species. Biochem Mol Biol Int 40:135–143

    PubMed  CAS  Google Scholar 

  21. Hiramatsu M (2003) A role for guanidino compounds in the brain. Mol Cell Biochem 244:57–62

    Article  PubMed  CAS  Google Scholar 

  22. Begni B, Brighina L, Sirtori E, Fumagalli L, Andreoni S, Beretta S, Oster T, Malaplate-Armand C, Isella V, Appolonio I, Ferrarese C (2004) Oxidatibe stress impairs glutamate uptake in fibroblasts from patients wuth Alzheimer´s disease. Free Rad Biol Med 37:892–901

    Article  PubMed  CAS  Google Scholar 

  23. Sala G, Beretta S, Ceresa C, Mattavelli L, Zoia C, Tremolizzo L, Ferri A, Carrı MT, Ferrarese C (2005) Impairment of glutamate transport and increased vulnerability to oxidative stress in neuroblastoma SH-SY5Y cells expressing a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis. Neurochem Int 46:227–234

    Article  PubMed  CAS  Google Scholar 

  24. Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348:443–446

    Article  PubMed  CAS  Google Scholar 

  25. Attwell D, Barbour B, Szatkowski M (1993) Nonvesicular release of neurotransmitter. Neuron 11:401–407

    Article  PubMed  CAS  Google Scholar 

  26. Rossi DJ, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321

    Article  PubMed  CAS  Google Scholar 

  27. Fariello RG, Golden GT, Pisa M (1982) Homotaurine (3-aminopropanesulfonic acid; 3APS) protects from the convulsivant and cytotoxic effect systemically administered kainic acid. Neurology 32:241–245

    PubMed  CAS  Google Scholar 

  28. French ED, Venazzi A, Whetsell WO Jr, Schwarcz R (1986) Antiexcitotoxic actions of taurine in the rat hippocampus studied in vivo and in vitro. Adv Exp Med Biol 203:349–362

    PubMed  CAS  Google Scholar 

  29. Trenkner E (1990) The role of taurine and glutamate during early postnatal cerebellar development of normal and weavermutant mice. Adv Exp Med Biol 268:239–244

    PubMed  CAS  Google Scholar 

  30. Petrosian AM, Haroutounian JE (2000) Taurine as a universal carrier of lipid soluble vitamins: a hypothesis. Amino acids 19:409–421

    Article  PubMed  CAS  Google Scholar 

  31. Kontro P, Oja SS (1987) Taurine and GABA release from mouse cerebral cortex slices: effectes of structural analogues and drugs. Neurochem Res 12:475–482

    Article  PubMed  CAS  Google Scholar 

  32. Frosini M, Sesti C, Dragoni S, Valoti M, Palmi M, Dixon HBF, Machetti F, Sgaragli G (2003) Interactions of taurine and structurally related analogues with the GABAergic system and taurine binding sites of rabbit brain. Brit J Pharmaco 138:1163–1171

    Article  CAS  Google Scholar 

  33. Di Leo MA, Mantini SA, Cercone S, Lepore D, Gentiloni Silveri N, Caputo S, Grecco AV, Giardina B, Franconi F, Ghirlanda G (2002) Chronic taurine supplementation ameliorates oxidative stress and Na+, K+-ATPase impairment in the retina of diabetic rats. Amino acids 23:401–406

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zugno, A.I., Oliveira, D.L., Scherer, E.B.S. et al. Guanidinoacetate Inhibits Glutamate Uptake in Rat Striatum of Rats at Different Ages. Neurochem Res 32, 959–964 (2007). https://doi.org/10.1007/s11064-006-9245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9245-1

Keywords

Navigation