Skip to main content
Log in

Age-related Changes in Tau Expression in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The work is a continuation of studies on tau expression and alternative splicing in the central nervous system of transgenic mice harboring human SOD1 with G93A amyotrophic lateral sclerosis (ALS)-associated mutation. Since age is an important risk factor for ALS, we expanded the studies into younger animals (age 5 and 25 days). We also included cerebellum, a structure not studied in the context of neurodegeneration in ALS. We found decreased total tau-mRNA expression in hippocampus but not in cortex and spinal cord of young transgenics, and a lack of exon 10 in 5-day-old mice. In cerebellum, the total tau-mRNA expression was increased in transgenic animals during the whole period of life, however at the symptomatic stage of ALS (age 120 days) the level of protein was decreased.

It can be concluded that the SOD1 G93A mutation causes early alterations of tau expression in cns, which are not exclusively restricted to the upper and lower motor neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rowland LP (ed) (1995) Hereditary and acquired motor neuron diseases, in Merritt’s textbook of neurology. Williams & Wilkins, Baltimore, pp 742–749

    Google Scholar 

  2. Mulder DW, Kurland LT, Offord KP, Beard CM (1986) Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36:511–517

    PubMed  CAS  Google Scholar 

  3. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, Chen W, Zhai P, Sufit RL, Siddique T (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  PubMed  CAS  Google Scholar 

  4. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Article  PubMed  CAS  Google Scholar 

  5. Schoenfeld TA, Obar RA (1994) Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 151:67–137

    Article  PubMed  CAS  Google Scholar 

  6. Chin SS, Goldman JE (1996) Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 55:499–508

    PubMed  CAS  Google Scholar 

  7. Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633

    Article  PubMed  CAS  Google Scholar 

  8. Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2:1615–1624

    Article  PubMed  CAS  Google Scholar 

  9. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  PubMed  CAS  Google Scholar 

  10. Usarek E, Kuzma-Kozakiewicz M, Schwalenstocker B, Kazmierczak B, Munch C, Ludolph AC, Baranczyk-Kuzma A (2006) Tau isoforms expression in transgenic mouse model of amyotrophic lateral sclerosis. Neurochem Res 31:597–602

    Article  PubMed  CAS  Google Scholar 

  11. Wang J, Xu G, Borchelt DR (2002) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol Dis 9:139–148

    Article  PubMed  CAS  Google Scholar 

  12. Gurney ME (1997) The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. J Neurol Sci 152(Suppl 1):67–73

    Article  Google Scholar 

  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  14. Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762:1051–1067

    PubMed  CAS  Google Scholar 

  15. Morrison BM, Shu IW, Wilcox AL, Gordon JW, Morrison JH (2000) Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol 165(2):207–220

    Article  PubMed  CAS  Google Scholar 

  16. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurochem 71:2041–2048

    Article  PubMed  CAS  Google Scholar 

  17. Tu PH, Raju P, Robinson KA, Gurney ME, Trojanowski JQ, Lee VM (1996). Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci USA 93:3155–3160

    Article  PubMed  CAS  Google Scholar 

  18. Kiernan JA, Hudson AJ (1993) Changes in shapes of surviving motor neurons in amyotrophic lateral sclerosis. Brain 116(Pt 1):203–215

    Article  PubMed  Google Scholar 

  19. Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, Sisodia SS, Rothstein JD, Borchelt DR, Price Dl, Cleveland DW (1997) ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338

    Google Scholar 

  20. Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111:3167–3177

    PubMed  CAS  Google Scholar 

  21. Hwang SC, Jhon DY, Bae YS, Kim JH, Rhee SG (1996) Activation of phospholipase C-gamma by the concerted action of tau proteins and arachidonic acid. J Biol Chem 271:18342–18349

    Article  PubMed  CAS  Google Scholar 

  22. Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131:327–1340

    Article  Google Scholar 

  23. Georgieff IS, Liem RK, Couchie D, Mavilia C, Nunez J, Shelanski ML (1993) Expression of high molecular weight tau in the central and peripheral nervous systems. J Cell Sci 105:729–737

    PubMed  CAS  Google Scholar 

  24. Pizzi M, Valerio A, Belloni M, Arrighi V, Alberici A, Liberini P, Spano P, Memo M (1995) Differential expression of fetal and mature tau isoforms in primary cultures of rat cerebellar granule cells during differentiation in vitro. Brain Res Mol Brain Res 34(1):38–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Polish-German project in neuroscience PBZ-MIN-001/P05/08 from the Polish Ministry of Science and Information Society Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Barańczyk-Kuźma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barańczyk-Kuźma, A., Usarek, E., Kuźma-Kozakiewcz, M. et al. Age-related Changes in Tau Expression in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Neurochem Res 32, 415–421 (2007). https://doi.org/10.1007/s11064-006-9242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9242-4

Keywords

Navigation