Skip to main content
Log in

Enzyme-Catalyzed Side Reactions with Molecular Oxygen may Contribute to Cell Signaling and Neurodegenerative Diseases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A link between neurodegeneration and well-characterized enzymatic and non-enzymatic reactions that produce reactive oxygen species (ROS) from O2 is well established. Several enzymes that contain pyridoxal 5′-phosphate (PLP) or thiamine diphosphate (ThDP) catalyze side reactions (paracatalytic reactions) in the presence of ambient O2. These side reactions produce oxidants such as hydrogen peroxide [H2O2] or extremely reactive peracids [RC(O)OOH]. We hypothesize that although these enzymes normally produce oxidants at low or undetectable levels, changes in substrate levels or disease-induced structural alterations may enhance interactions with O2, thereby generating higher levels of reactive oxidants. These oxidants may damage the enzymes producing them, alter nearby macromolecules and/or destroy important metabolites/coenzymes. We propose that paracatalytic reactions with O2 catalyzed by PLP-dependent decarboxylases and by ThDP-dependent enzymes within the α-keto acid dehydrogenase complexes may contribute to normal cellular signaling and to cellular damage in neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

ALS II:

Acetolactate synthase isozyme II

BCKADC:

Branched chain α-keto acid dehydrogenase complex

CSAD:

Cysteine sulfinic acid decarboxylase

DDC:

Dopa decarboxylase

dopal:

3,4-dihydroxyphenylacetaldehyde

E1b:

Branched-chain α-keto acid dehydrogenase

E1k:

α-Ketoglutarate dehydrogenase

E1p:

Pyruvate dehydrogenase

E2k:

Dihydrolipoamide succinyl transferase

E3 :

Dihydrolipoamide dehydrogenase

GABA:

γ-Aminobutyric acid

GAD:

Glutamate decarboxylase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GSH:

Glutathione

GSSG:

Glutathione disulfide

KG:

α-Ketoglutarate

KGDHC:

α-Ketoglutarate dehydrogenase complex

ODC:

Ornithine decarboxylase

PAAS:

Phenylacetaldehyde synthase

PDHC:

Pyruvate dehydrogenase complex

PLP:

Pyridoxal 5′-phosphate

PMP:

Pyridoxamine 5′-phosphate

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

SOD:

Superoxide dismutase

TCA:

Tricarboxylic acid

ThDP:

Thiamine diphosphate

TNB:

5-Thionitrobenzoate

Tx:

Thioredoxin

References

  1. Christen P, Cogoli-Greuter M, Healy MJ, Lubini D (1976) Specific irreversible inhibition of enzymes concomitant to the oxidation of carbanionic enzyme-substrate intermediates by hexacyanoferrate (III). Eur J Biochem 63:223–231

    Article  PubMed  CAS  Google Scholar 

  2. Cogoli-Greuter M, Hausner U, Christen P (1979) Irreversible inactivation of pyruvate decarboxylase in the presence of substrate and an oxidant. An example of paracatalytic enzyme inactivation. Eur J Biochem 100:295–300

    Article  PubMed  CAS  Google Scholar 

  3. Christen P, Gasser A (1980) Production of glycolate by oxidation of the 1, 2-dihydroxyethyl-thiamin-diphosphate intermediate of transketolase with hexacyanoferrate (III) or H2O2. Eur J Biochem 107:73–77

    Article  PubMed  CAS  Google Scholar 

  4. Bunik VI, Schloss JV, Pinto JT, Dudareva N, Cooper AJL (2007) A survey of oxidative paracatalytic reactions catalyzed by enzymes that generate carbanion intermediates. Implications for ROS production, cancer etiology and neurodegenerative disease. Adv Enzymol (in press)

  5. Bowes G, Ogren WL, Hagerman RH (1971) Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem Biophys Res Commun 45:716–722

    Article  PubMed  CAS  Google Scholar 

  6. Ryan FJ, Tolbert NE (1975) Ribulose diphosphate carboxylase/oxygenase III. Isolation and properties. J Biol Chem 250:4229–4233

    PubMed  CAS  Google Scholar 

  7. Chen Z, Chastain CJ, Al-Abed SR, Chollet R, Spreitzer RJ (1988) Reduced CO2/O2 specificity of ribulose-bisphosphate carboxylase/oxygenase in a temperature-sensitive chloroplast mutant in Chlamydomonas. Proc Natl Acad Sci USA 85:4696–4699

    Article  PubMed  CAS  Google Scholar 

  8. Yu G-X, Park B-H, Chandramohan P, Geist A, Samatova NF (2005) An evolution-based analysis scheme to identify CO2/O2 specificity-determining factors for ribulose 1, 5-bisphosphate carboxylase/oxygenase. Protein Eng Des Sel 18:589–596

    Article  PubMed  CAS  Google Scholar 

  9. Schloss JV, Hixon MS (1998) Enol chemistry and enzymology. In: Sinnod M (eds) Comprehensive biological catalysis, 2. Reactions of Nucleophilic/Carbanionoid Carbon. Academic, London, pp 43–114

  10. Abell LM, Schloss JV (1991) Oxygenase side reactions of acetolactate synthase and other carbanion-forming enzymes. Biochemistry 30:7883–7887

    Article  PubMed  CAS  Google Scholar 

  11. Hixon M, Sinerius G, Schneider A, Walter C, Fessner W-D, Schloss JV (1996) Quo vadis respiration: a tale of two aldolases. FEBS Lett 392:281–284

    Article  PubMed  CAS  Google Scholar 

  12. Fessner W-D, Schneider A, Held H, Sinerius G, Walter C, Hixon M, Schloss JV (1996) The mechanism of class II, metal-dependent aldolases. Angew Chem Int Ed Engl 35:2219–2221

    Article  CAS  Google Scholar 

  13. Hixon MS (1997) Ph.D. dissertation, University of Kansas

  14. Dophin D, Poulson R, Avramović O (eds) (1986) Vitamin B6 pyridoxal phosphate. Wiley, New York

    Google Scholar 

  15. Agnihotri G, Liu HW (2001) PLP and PMP radicals: a new paradigm in coenzyme B6 chemistry. Bioorg Chem 29:234–257

    Article  PubMed  CAS  Google Scholar 

  16. Bertoldi M, Carbone V, Borri Voltattorni C (1999) Ornithine and glutamate decarboxylases catalyse an oxidative deamination of their α-methyl substrates. Biochem J 342:509–512

    Article  PubMed  CAS  Google Scholar 

  17. Davis K, Foos T, Wu J-Y, Schloss JV (2001) Oxygen-induced seizures and inhibition of human glutamate decarboxylase and porcine cysteine sulfinic acid decarboxylase by oxygen and nitric oxide. J Biomed Sci 8:359–364

    Article  PubMed  CAS  Google Scholar 

  18. Choi SY, Churchich JE (1986) Glutamate decarboxylase side reactions catalyzed by the enzyme. Eur J Biochem 160:515–520

    Article  PubMed  CAS  Google Scholar 

  19. Porter TG, Martin DL (1987) Rapid inactivation of pig brain glutamate decarboxylase by aspartate. J Neurochem 48:67–72

    Article  PubMed  CAS  Google Scholar 

  20. Foos T, Wu J-Y (2000) The cloning and characterization of two soluble forms of brain cysteine sulfinic acid decarboxylase. J Neurochem 74:S38C (Absrtact)

    Google Scholar 

  21. Bertoldi M, Moore S, Maras B, Dominici P, Borri Voltattorni C (1996) Mechanism-based inactivation of dopa decarboxylase by serotonin. J Biol Chem 271:23954–23959

    Article  PubMed  CAS  Google Scholar 

  22. Bertoldi M, Dominici P, Moore S, Maras B, Borri Voltattorni C (1998) Reaction of dopa decarboxylase with α-methyldopa leads to an oxidative deamination producing 3, 4-dihydroxyphenylacetone, an active site directed affinity label. Biochemistry 37:6552–6561

    Article  PubMed  CAS  Google Scholar 

  23. Bertoldi M, Frigeri P, Paci M, Borri Voltattorni C (1999) Reaction specificity of native and nicked 3, 4-dihydroxyphenylalanine decarboxylase. J Biol Chem 274:5514–5521

    Article  PubMed  CAS  Google Scholar 

  24. Bertoldi M, Gonsalvi M, Contestabile R, Borri Voltattorni C (2002) Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase. J Biol Chem 277:36357–36362

    Article  PubMed  CAS  Google Scholar 

  25. Bertoldi M, Borri Voltattorni C (2003) Reaction and substrate specificity of recombinant pig kidney dopa decarboxylase under aerobic and anaerobic conditions. Biochim Biophys Acta 1647:42–47

    PubMed  CAS  Google Scholar 

  26. Bertoldi M, Cellini B, Maras B, Borri Voltattorni C (2005) A quinonoid intermediate of oxidative deamination reaction catalyzed by dopa decarboxylase. FEBS Lett 579:5175–5180

    Article  PubMed  CAS  Google Scholar 

  27. Sakai K, Miyasako Y, Nagatomo H, Watanabe H, Wakayama M, Moriguchi M (1997) L-Ornithine decarboxylase from Hafnia alvei has a novel L-ornithine oxidase activity. J Biochem 122:961–968

    PubMed  CAS  Google Scholar 

  28. Kilpeläinen P, Rybnikova E, Hietala O, Pelto-Huikko M (2000) Expression of ODC and its regulatory antizyme in the adult rat brain. J Neurosci Res 62:675–685

    Article  PubMed  Google Scholar 

  29. Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield M, Cooper AJL, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2006) Phenylacetaldehyde synthase from Petunia hybrida is a bifunctional enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366

    Article  PubMed  CAS  Google Scholar 

  30. Schloss JV, Hixon MS, Chu F, Chang S, Duggleby RG (1996) Products formed in the oxygen-consuming reactions of acetolactate synthase and pyruvate decarboxylase. In: Bisswanger H, Schellenberger A (eds) Biochemistry and physiology of thiamin diphosphate enzymes. Intemann, Prien, Germany, pp 580–585

    Google Scholar 

  31. Spolitak T, Dawson JH, Ballou DP (2005) Reaction of ferric cytochrome P450cam with peracids. Kinetic characterization of intermediates on the reaction pathway. J Biol Chem 280:20300–20309

    Article  PubMed  CAS  Google Scholar 

  32. Bunik VI, Denton TT, Xu H, Thompson CM, Cooper AJL, Gibson GE (2005) Phosphonate analogs of α-ketoglutarate inhibit the activity of α-ketoglutarate dehydrogenase complex isolated from brain and in cultured cells. Biochemistry 44:10552–10561

    Article  PubMed  CAS  Google Scholar 

  33. Bunik VI, Pavlova OG (1997) Inactivation of α-ketoglutarate dehydrogenase in the course of enzymatic reaction. Biochemistry (Moscow) 62:973–982 (English translation)

    Google Scholar 

  34. MacDonald MJ, Husain RD, Hoffmann-Benning S, Baker TR (2004) Immunochemical identification of Coenzyme Qo-dihydrolipoamide adducts in the E2 components of the α-ketoglutarate and pyruvate dehydrogenase complexes partially explains the cellular toxicity of Coenzyme Qo. J Biol Chem 279:27278–27285

    Article  PubMed  CAS  Google Scholar 

  35. Bunik VI, Pavlova OG (1993) Inactivation of α-ketoglutarate dehydrogenase during oxidative decarboxylation of α-ketoadipic acid. FEBS Lett 323:166–170

    Article  PubMed  CAS  Google Scholar 

  36. Bunik VI, Sievers C (2002) Inactivation of the 2-oxo acid dehydrogenases complexes upon generation of intrinsic radical species. Eur J Biochem 269:5004–5015

    Article  PubMed  CAS  Google Scholar 

  37. Bunik V (2000) Increased catalytic performance of the 2-oxoacid dehydrogenase complexes in the presence of thioredoxin, a thiol-disulfide oxidoreductase. J Mol Catal B Enzym 8:165–174

    Article  CAS  Google Scholar 

  38. Bunik V (2003) 2-Oxo acid dehydrogenase complexes in redox regulation. Role of the lipoate residues and thioredoxin. Eur J Biochem 270:1036–1042

    Article  PubMed  CAS  Google Scholar 

  39. Bunik V, Raddatz G, Lemaire S, Meyer Y, Jacquot J-P, Bisswanger H (1999) Interaction of thioredoxins with target proteins: role of particular structural elements and electrostatic properties of thioredoxins in their interplay with 2-oxo acid dehydrogenase complexes. Protein Sci 8:65–74

    PubMed  CAS  Google Scholar 

  40. Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial α-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24:7779–7788

    Article  PubMed  CAS  Google Scholar 

  41. Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by α-ketoglutarate dehydrogenase. J Neurosci 24:7771–7778

    Article  PubMed  CAS  Google Scholar 

  42. Chatgilialoglu C, Ferreri C (2005) Trans lipids: the free radical path. Acc Chem Res 38:441–448

    Article  PubMed  CAS  Google Scholar 

  43. Cooper AJL, Ginoz JZ, Meister A (1983) Synthesis and properties of the α-keto acids. Chem Rev 83:321–358

    Article  CAS  Google Scholar 

  44. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58:495–505

    Article  PubMed  CAS  Google Scholar 

  45. Fedotcheva N, Sokolov A, Kondrashova MN (2006) Nonenzymatic formation of succinate in mitochondria under oxidative stress. Free Radic Biol Med 41:56–64

    Article  PubMed  CAS  Google Scholar 

  46. Santos SS, Gibson GE, Cooper AJL, Denton TT, Thompson CM, Bunik VI, Alves PM, Sonnewald U (2006) Inhibitors of α-ketoglutarate dehydrogenase complex alter [1-13C] glucose and [U-13C] glutamate metabolism in cerebellar granule neurons. J Neurosci Res 83:450–458

    Article  PubMed  CAS  Google Scholar 

  47. Sumegi B, Alkonyi I (1983) Paracatalytic inactivation of pig heart pyruvate dehydrogenase complex. Arch Biochem Biophys 223:417–424

    Article  PubMed  CAS  Google Scholar 

  48. Machius M, Wynn RM, Chuang JL, Li J, Kluger R, Yu D, Tomchick DR, Brautigam CA, Chuang DT (2006) A versatile conformational switch regulates reactivity in human branched-chain α-ketoacid dehydrogenase. Structure 14:287–298

    Article  PubMed  CAS  Google Scholar 

  49. Schloss JV (2002) Oxygen toxicity from plants to people. Planta 216:38–43

    Article  PubMed  CAS  Google Scholar 

  50. Kety SS (1991) The circulation, metabolism and functional activity of the human brain. Neurochem Res 16:1073–1078

    Article  PubMed  CAS  Google Scholar 

  51. Lucignani G, Schmidt KC, Moresco RM, Striano G, Colombo F, Sokoloff L, Fazio F (1993) Measurement of regional cerebral glucose utilization with F18-FDG and PET in heterogeneous tissues: theoretical considerations and practical procedures. J Nucl Med 34:360–369

    PubMed  CAS  Google Scholar 

  52. Gaitonde HK, Evison E, Evans GM (1983) The rate of utilization of glucose via hexosemonophosphate shunt in brain. J Neurochem 41:1253–1260

    Article  PubMed  CAS  Google Scholar 

  53. Bacquer NZ, Hothersall JS, McLean P (1988) Function and regulation of the pentose phosphate pathway in brain. Curr Top Cell Regul 29:265–289

    Google Scholar 

  54. Rehncrona S, Folbergrová J, Smith DS, Siesjö BK (1980) Influence of complete and pronounced incomplete cerebral ischemia and subsequent recirculation on cortical concentrations of oxidized and reduced glutathione in the rat. J Neurochem 34:477–486

    Article  PubMed  CAS  Google Scholar 

  55. Cooper AJL, Pulsinelli WA, Duffy TE (1980) Glutathione and ascorbate during ischemia and post-ischemic reperfusion in rat brain. J Neurochem 35:1242–1245

    Article  PubMed  CAS  Google Scholar 

  56. Shelton MD, Chock PB, Mieyal JJ (2005) Glutaredoxin: role in reversible protein S-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal 7:348–366

    Article  PubMed  CAS  Google Scholar 

  57. Sheu F-S, Zhu W, Fung PCW (2000) Direct observation of trapping and release of nitric oxide by glutathione and cysteine with electron paramagnetic resonance spectroscopy. Biophys J 78:1216–1226

    PubMed  CAS  Google Scholar 

  58. Ridnour LA, Thomas DD, Mancardi D, Espey MG, Miranda KM, Paolocci N, Feelisch M, Fukuto J, Wink DA (2004) The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen species. Putting perspective on stressful biological situations. Biol Chem 385:1–10

    Article  PubMed  CAS  Google Scholar 

  59. Jourd’heuil D, Jourd’hueil FL, Feelisch M (2003) Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism. J Biol Chem 278:15720–15726

    Article  PubMed  CAS  Google Scholar 

  60. Hermann A, Varga V, Janáky R, Dohovics R, Saransaari P, Oja SS (2000) Interference of S-nitrosoglutathione with the binding of ligands to ionotropic glutamate receptors in pig cerebral cortical synaptic membranes. Neurochem Res 25:1119–1124

    Article  PubMed  CAS  Google Scholar 

  61. Li C-Y, Chin F-Y, Chueh S-H (2004) Rat cerebellar granule cells are protected from glutamate-induced excitotoxicity by S-nitrosoglutathione but not glutathione. Am J Physiol Cell Physiol 286:C893–C904

    Article  PubMed  CAS  Google Scholar 

  62. Khanna S, Roy S, Slivka A, Craft TK, Chaki S, Rink C, Notestine MA, DeVries AC, Parinandi NL, Sen CK (2005) Neuroprotective properties of the natural vitamin E α-tocotrienol. Stroke 36:2258–2264

    Article  PubMed  CAS  Google Scholar 

  63. Rice ME, Forman RE, Chen BT, Avshalumov MV, Cragg SJ, Drew KL (2002) Brain antioxidant regulation in mammals and anoxia-tolerant reptiles: balance for neuroprotection and neuromodulation. Comp Biochem Physiol Toxicol Pharmacol 133:515–525

    Article  CAS  Google Scholar 

  64. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163

    Article  PubMed  CAS  Google Scholar 

  65. Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23:209–216

    Article  PubMed  CAS  Google Scholar 

  66. Antunes F, Nunes C, Laranjinha J, Cadenas E (2005) Redox interactions of nitric oxide with dopamine and its derivatives. Toxicology 208:207–212

    Article  PubMed  CAS  Google Scholar 

  67. Rodriguez R, Redman R (2005) Balancing generation and elimination of reactive oxygen species. Proc Natl Acad Sci USA 102:3175–3176

    Article  PubMed  CAS  Google Scholar 

  68. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    Article  PubMed  CAS  Google Scholar 

  69. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–608

    Google Scholar 

  70. Massey V, Muller F, Feldberg R, Schuman M, Sullivan PA, Howell LG, Mayhew SG, Matthews RG, Foust GP (1969) The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J Biol Chem 244:3999–4006

    PubMed  CAS  Google Scholar 

  71. Harrison JE, Schultz J (1976) Studies on the chlorinating ability of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  CAS  Google Scholar 

  72. van Dalen CJ, Winterbourn CC, Kettle AJ (2006) Mechanism of nitrite oxidation by eosinophil peroxidase: implications for oxidant production and nitration by eosinophils. Biochem J 394:707–713

    Article  PubMed  CAS  Google Scholar 

  73. Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C (2006) Active structure and catalytic mechanisms of human peroxidases. Arch Biochem Biophys 445:199–213

    Article  PubMed  CAS  Google Scholar 

  74. Cesareo E, Parker LJ, Pedersen JZ, Nuccetelli M, Mazzetti AP, Pastore A, Federici G, Caccuri AM, Ricci G, Adams JJ, Parker MW, Lo Bello M (2005) Nitrosylation of human glutathione transferase P1-1 with dinitrosyl diglutathionyl iron complex in vitro and in vivo. J Biol Chem 280:42172–42180

    Article  PubMed  CAS  Google Scholar 

  75. Sacksteder CA, Qian WJ, Knyushko TV, Wang H, Chin MH, Lacan G, Melega WP, Camp DG II, Smith RD, Squier TC, Bigelow DJ (2006) Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45:8009–8022

    Article  PubMed  CAS  Google Scholar 

  76. Zhang Y, Hogg N (2005) S-Nitrosothiols: cellular formation and transport. Free Radic Biol Med 38:831–838

    Article  PubMed  CAS  Google Scholar 

  77. Rhee SG (2006) H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  78. Safiulina VF, Afzoalov R, Khiroug L, Cherubini E, Giniatullin R (2006) Reactive oxygen species mediate the potentiating effect of ATP on GABAergic synaptic transmission in the immature hippocampus. J Biol Chem 281:23464–23470

    Article  PubMed  CAS  Google Scholar 

  79. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A, Periquet A, Fernandez Y, Ktorza A, Casteilla L, Penicaud L (2006) Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55:2084–2090

    Article  PubMed  CAS  Google Scholar 

  80. Liang H-W, Xia Q, Bruce IC (2005) Reactive oxygen species mediate the neuroprotection conferred by a mitochondrial ATP-sensitive potassium channel opener during ischemia in the rat hippocampal slice. Brain Res 1042:169–175

    Article  PubMed  CAS  Google Scholar 

  81. Chen BT, Avshalumov MV, Rice ME (2001) H2O2 is a novel, endogenous modulator of synaptic dopamine release. J Neurophysiol 85:2468–2476

    PubMed  CAS  Google Scholar 

  82. Avshalumov MV, Chen BT, Marshall SP, Pena DM, Rice ME (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744–2750

    PubMed  CAS  Google Scholar 

  83. Avshalumov MV, Rice ME (2003) Activation of ATP-sensitive K+ (KATP) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release. Proc Natl Acad Sci USA 100:11729–11734

    Article  PubMed  CAS  Google Scholar 

  84. Avshalumov MV, Chen BT, Koos T, Tepper JM, Rice ME (2003) Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 25:4222–4231

    Article  CAS  Google Scholar 

  85. Auerbach JM, Segal M (1997) Peroxide modulation of slow onset potentiation in rat hippocampus. 17:8695–8701

  86. Giniatullin AR, Giniatullin RA (2003) Dual action of hydrogen peroxide on synaptic transmission at the frog neuromuscular junction. J Physiol 552:283–293

    Article  PubMed  CAS  Google Scholar 

  87. Giniatullin AR, Grishin SN, Sharifulina ER, Petrov AM, Zefirov AL, Giniatullin RA (2005) Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction. J Physiol 565:229–242

    Article  PubMed  CAS  Google Scholar 

  88. Hara MR, Snyder SH (2006) Nitric oxide—GAPDH—Siah: a novel cell death cascade. Cell Mol Neurobiol 26:525–536

    Article  CAS  Google Scholar 

  89. Hara MR, Snyder SH (2006) Cell signaling and neuronal death. Annu Rev Pharmacol Toxicol 47:1.1–1.25

    Google Scholar 

  90. Habelhah H, Laine A, Erdjument-Bromage H, Tempst P, Gershwin ME, Bowtell DD, Ronai Z (2004) Regulation of 2-oxoglutarate (α-ketoglutarate) dehydrogenase stability by the RING finger ubiquitin ligase Siah. J Biol Chem 279:53782–53788

    Article  PubMed  CAS  Google Scholar 

  91. Adam-Vizi V (2005) Production of reactive oxygen species in brain mitochondria: contribution by electron-transport chain and non-electron transport chain sources. Antioxid Redox Signal 7:1140–1149

    Article  PubMed  CAS  Google Scholar 

  92. Browne SE, Ferrante RJ, Beal MF (1991) Oxidative stress in huntington’s disease. Brain Pathol 9:147–163

    Article  Google Scholar 

  93. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. 111:785–793

  94. Browne SE, Beal MF (2004) The energetics of huntington’s disease. Neurochem Res 29:531–546

    Article  PubMed  CAS  Google Scholar 

  95. Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386

    Article  PubMed  CAS  Google Scholar 

  96. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  97. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18–S25

    Article  PubMed  Google Scholar 

  98. Reddy PH, Beal MF (2005) Are mitochondria critical in the pathogenesis of Alzheimer’s disease? Brain Res Brain Res Rev 49:618–632

    Article  PubMed  CAS  Google Scholar 

  99. Hervias I, Beal MF, Manfredi G (2006) Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve 33:598–608

    Article  PubMed  CAS  Google Scholar 

  100. Kanaani J, Diacovo MJ, El-Din El-Husseini A, Bredt DS, Baekkeskov S (2004) Palmitoylation controls trafficking of GAD65 from golgi membranes to axon-specific endosomes and a Rab5a-dependent pathway to presynaptic clusters. J Cell 117:2001–2013

    Article  CAS  Google Scholar 

  101. Hsu C-C, Thomas C, Chen W, Davis KM, Foos T, Chen JL, Wu E, Floor E, Schloss JV, Wu J-Y (1999) Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem 274:24366–24371

    Article  PubMed  CAS  Google Scholar 

  102. Valabrègue R, Aubert A, Burger J, Bittoun J, Costalat R Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J Cereb Blood Flow Metab 23:536–545

  103. Nagendra SN, Faiman MD, Davis K, Wu J-Y, Newby X, Schloss JV (1997) Carbamoylation of glutamate receptors by a disulfiram metabolite. J Biol Chem 272:24247–24251

    Article  PubMed  CAS  Google Scholar 

  104. Albrecht J, Schousboe A (2005) Taurine interaction with neurotransmitter in the CNS: an update. Neurochem Res 30:1615–1621

    Article  PubMed  CAS  Google Scholar 

  105. Wu JY, Tang XW, Schloss JV, Faiman MD (1998) Regulation of taurine biosynthesis and its physiological significance in the brain. Adv Exp Med Biol 442:339–345

    PubMed  CAS  Google Scholar 

  106. Hayes KC, Carey RE, Schmidt SY (1975) Retinal degeneration associated with taurine deficiency in the cat. Science 188:949–951

    Article  PubMed  CAS  Google Scholar 

  107. Wada JA, Osawa T, Wake A, Corcoran ME (1975) Effects of taurine on kindled amygdaloid seizures in rats, cats, and photosensitive baboons. Epilepsia 16:229–234

    PubMed  CAS  Google Scholar 

  108. Van Gelder NM, Koyama I, Jasper HH (1977) Taurine treatment of spontaneous chronic epilepsy in a cat. Epilepsia 18:45–54

    PubMed  Google Scholar 

  109. Barbeau A, Donaldson J (1974) Zinc, taurine, and epilepsy. Arch Neurol 30:52–58

    PubMed  CAS  Google Scholar 

  110. Barbeau A, Inour N, Tsukada Y, Butterworth RF (1975) The neuropharmacology of taurine. Life Sci 17:669–677

    Article  PubMed  CAS  Google Scholar 

  111. Hays KC, Sturman JA (1981) Taurine in metabolism. Ann Rev Nutr 1:401–425

    Article  Google Scholar 

  112. Lehmann A (1987) Pentylenetetrazol seizure threshold and extra cellular levels of cortical amino acids in taurine-deficient kittens. Acta Physiol Scand 131:453–458

    Article  PubMed  CAS  Google Scholar 

  113. Sturman J (1991) Dietary taurine and feline reproduction and development. J Nutr 121:S166–S170

    PubMed  CAS  Google Scholar 

  114. Sturman J (1992) Review: taurine deficiency and the cat. Adv Exp Med Biol 315:1–5

    PubMed  CAS  Google Scholar 

  115. Kotlyar AB, Karliner JS, Cecchini G (1995) A novel strong competitive inhibitor of complex I. FEBS Lett 579:4861–4866

    Article  CAS  Google Scholar 

  116. Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS (2003) 3,4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989:205–213

    Article  PubMed  CAS  Google Scholar 

  117. Christeller JT (1981) The effects of bivalent cations on ribulose bisphosphate carboxylase/oxygenase. Biochem J 193:839–844

    PubMed  CAS  Google Scholar 

  118. Finefrock AE, Bush AI, Doraiswamy PM (2003) Current status of metals as therapeutic targets in Alzheimer’s disease. J Am Geriatr Soc 51:1143–1148

    Article  PubMed  Google Scholar 

  119. Gazaryan IG, Krasnikov BF, Ashby GA, Thorneley RNF, Kristal BS, Brown AM (2002) Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J Biol Chem 277:10064–10072

    Article  PubMed  CAS  Google Scholar 

  120. Gibson GE, Blass JP, Beal MF, Bunik V (2005) The α-ketoglutarate dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol Neurobiol 31:43–63

    Article  PubMed  CAS  Google Scholar 

  121. Ko LW, Sheu KF, Thaler HT, Markesbery WR, Blass JP (2001) Selective loss of KGDHC-enriched neurons in Alzheimer temporal cortex: does mitochondrial variation contribute to selective vulnerability? J Mol Neurosci 17:361–369

    Article  PubMed  CAS  Google Scholar 

  122. Butterworth RF, Leong DK (1996) Thiamine deficiency (Wernicke’s) encephalopathy: pathophysiologic mechanisms and development of positron emission tomography (PET) ligands. In: Bisswanger H, Schellenberger A (eds) Biochemistry and physiology of thiamin diphosphate enzymes. Intemann, Prien, Germany, pp 409–417

    Google Scholar 

  123. Venkatraman A, Landar A, Davis AJ, Chamlee L, Sanderson T, Kim H, Page G, Pompilius M, Ballinger S, Darley-Usmar V, Bailey SM (2004) Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatotoxicity. J Biol Chem 279:22092–22101

    Article  PubMed  CAS  Google Scholar 

  124. Shi Q, Chen H-L, Xu H, Gibson GE (2005) Reduction in the E2k subunit of the α-ketoglutarate dehydrogenase complex has effects independent of complex activity. J Biol Chem 280:10888–10896

    Article  PubMed  CAS  Google Scholar 

  125. Elam JS, Malek K, Rodriguez JA, Doucette PA, Taylor AB, Hayward LJ, Cabelli DE, Valentine JS, Hart PJ (2003) An alternative mechanism of bicarbonate-mediated peroxidation by copper-zinc superoxide dismutase. Rates enhanced via proposed enzyme-associated peroxycarbonate intermediate. J Biol Chem 278:21032–21039

    Article  PubMed  CAS  Google Scholar 

  126. Liochev SI, Fridovich I (2004) Carbon dioxide mediates Mn (II)-catalyzed decomposition of hydrogen peroxide and peroxidation reactions. Proc Natl Acad Sci USA 101:12485–12490

    Article  PubMed  CAS  Google Scholar 

  127. Andrekopoulos C, Zhang H, Joseph J, Kalivendi S, Kalyanaraman B (2004) Bicarbonate enhances α-synuclein oligomerization and nitration: intermediacy of carbonate radical anion and nitrogen dioxide radical. Biochem J 378:435–447

    Article  PubMed  CAS  Google Scholar 

  128. Markiewicz J, Strumilo S (1997) The effect of Mn2+ on the catalytic function of heart muscle 2-oxoglutarate dehydrogenase complex. Biochem Arch 13:127–129

    CAS  Google Scholar 

  129. Gomazkova VS (1973) Effect of thiamine pyrophosphate and of the ions of divalent metals on the activity and stability of the α-ketoglutarate decarboxylase from the breast muscle of pigeon. Biokhimiia 38:756–762 (Russian)

    Google Scholar 

  130. Park LCH, Sheu K-FR, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE (1999) Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 72:1948–1958

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

VIB greatly acknowledges a longstanding support of her work on the mechanism of the catalysis and regulation of the α-keto acid dehydrogenase complexes by the Alexander von Humboldt Foundation (Bonn, Germany). JVS gratefully acknowledges support by the Office of Naval Research (N00014-94-1-0457; N00014-00-1-01-02; N00014-03-1-0450) and NIH (GM48568). Work cited from the AJLC and GEG laboratories was supported by NIH grants AG14930, AG14600 and AG19589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. L. Cooper.

Additional information

Special issue dedicated to John P. Blass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunik, V.I., Schloss, J.V., Pinto, J.T. et al. Enzyme-Catalyzed Side Reactions with Molecular Oxygen may Contribute to Cell Signaling and Neurodegenerative Diseases. Neurochem Res 32, 871–891 (2007). https://doi.org/10.1007/s11064-006-9239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9239-z

Keywords

Navigation