Skip to main content
Log in

Myelin Structure and Composition in Zebrafish

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 January 2007

Abstract

To establish a standard for genotype/phenotype studies on the myelin of zebrafish (Danio rerio), an organism increasingly popular as a model system for vertebrates, we have initiated a detailed characterization of the structure and biochemical composition of its myelinated central and peripheral nervous system (CNS; PNS) tissues. Myelin periods, determined by X-ray diffraction from whole, unfixed optic and lateral line nerves, were ∼153 and ∼162 Å, respectively. In contrast with the lability of PNS myelin in higher vertebrates, zebrafish lateral line nerve myelin exhibited structural stability when exposed to substantial changes in pH and ionic strength. Neither optic nor lateral line nerves showed swelling at the cytoplasmic apposition in CaCl2-containing Ringer’s solution, in contrast with nerves from other teleost and elasmobranch fishes. Zebrafish optic nerve showed greater stability against changes in NaCl and CaCl2 than lateral line nerve. The nerves from zebrafish having mutations in the gene for myelin basic protein (mbpAla2Thr and mbpAsp25Val) showed similar myelin periods as the wildtype (WT), but gave ∼20% less compact myelin. Analysis of proteins by SDS-PAGE and Western blotting identified in both CNS and PNS of WT zebrafish two orthologues of myelin P0 glycoprotein that have been characterized extensively in trout—intermediate protein 1 (24 kDa) and intermediate protein 2 (28 kDa). Treatment with endoglycosidase-F demonstrated a carbohydrate moiety of ∼7 kDa, which is nearly threefold larger than for higher vertebrates. Thin-layer chromatography for lipids revealed a similar composition as for other teleosts. Taken together, these data will serve as a baseline for detecting changes in the structure and/or amount of myelin resulting from mutations in myelin-related genes or from exogenous, potentially cytotoxic compounds that could affect myelin formation or stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Waehneldt TV (1990) Phylogeny of myelin proteins. Ann NY Acad Sci 605:15–28

    Article  PubMed  CAS  Google Scholar 

  2. Yin X, Baek RC, Kirschner DA, Peterson A, Fujii Y, Nave KA, Macklin WB, Trapp BD (2006) Evolution of a neuroprotective function of central nervous system myelin. J Cell Biol 172:469–478

    Article  PubMed  CAS  Google Scholar 

  3. Spiryda LB (1998) Myelin protein zero and membrane adhesion. J Neurosci Res 54:137–146

    Article  PubMed  CAS  Google Scholar 

  4. Lanwert C, Jeserich G (2001) Structure, heterologous expression, and adhesive properties of the P(0)-like myelin glycoprotein IP1 of trout CNS. Microsc Res Tech 52:637–644

    Article  PubMed  CAS  Google Scholar 

  5. Stratmann A, Jeserich G (1995) Molecular cloning and tissue expression of a cDNA encoding IP1—a P0-like glycoprotein of trout CNS myelin. J Neurochem 64:2427–2436

    Article  PubMed  CAS  Google Scholar 

  6. Kirschner DA, Wrabetz L, Feltri ML (2004) The P0 gene. In: Lazzarini RA, Griffin JW, Lassmann H, Nave K-A, Miller RH, Trapp BD (eds) Myelin biology and disorders 1. Elsevier/Academic, Amsterdam, pp. 523–545

    Google Scholar 

  7. Waehneldt TV, Matthieu JM, Jeserich G (1986) Appearance of myelin proteins during vertebrate evolution. Neurochem Int 9:463–474

    Article  CAS  PubMed  Google Scholar 

  8. Campagnoni AT, Campagnoni CW (2004) Myelin basic protein gene. In: Lazzarini RA, Griffin JW, Lassmann H, Nave K-A, Miller RH, Trapp BD (eds) Myelin biology and disorders 1. Elsevier/Academic, Amsterdam, pp. 387–400

    Google Scholar 

  9. Karthigasan J, Kosaras B, Nguyen J, Kirschner DA (1994) Protein and lipid composition of radial component-enriched CNS myelin. J Neurochem 62:1203–1213

    Article  PubMed  CAS  Google Scholar 

  10. Kirschner DA, Ganser AL (1980) Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283:207–210

    Article  PubMed  CAS  Google Scholar 

  11. Privat A, Jacque C, Bourre J-M, Dupouey P, Baumann NA (1979) Absence of the major dense line in myelin of the mutant mouse “shiverer”. Neurosci Lett 12:107–112

    Article  PubMed  CAS  Google Scholar 

  12. Harauz G, Ishiyama N, Hill CM, Bates IR, Libich DS, Fares C (2004) Myelin basic protein-diverse conformational states of an intrinsically unstructured protein and its roles in myelin assembly and multiple sclerosis. Micron 35:503–542

    Article  PubMed  CAS  Google Scholar 

  13. Brösamle C, Halpern ME (2002) Characterization of myelination in the developing zebrafish. Glia 39:47–57

    Article  PubMed  Google Scholar 

  14. Morris JK, Willard BB, Yin X, Jeserich G, Kinter M, Trapp BD (2004) The 36K protein of zebrafish CNS myelin is a short-chain dehydrogenase. Glia 45:378–391

    Article  PubMed  Google Scholar 

  15. Schweitzer J, Becker T, Becker CG, Schachner M (2003) Expression of protein zero is increased in lesioned axon pathways in the central nervous system of adult zebrafish. Glia 41:301–317

    Article  PubMed  Google Scholar 

  16. Kirschner DA, Inouye H, Ganser AL, Mann V (1989) Myelin membrane structure and composition correlated: a phylogenetic study. J Neurochem 53:1599–1609

    Article  PubMed  CAS  Google Scholar 

  17. Blaurock AE, Yale JL (1987) Calcium ions trigger the expansion in bistable myelin. Neurosci Lett 73:167–172

    Article  PubMed  CAS  Google Scholar 

  18. Blaurock AE, Yale JL, Roots BI (1986) Ca-controlled, reversible structural transition in myelin. Neurochem Res 11:1103–1129

    Article  PubMed  CAS  Google Scholar 

  19. Blaurock AE, Chandross RJ, Bear RS (1985) Surprising thermal transition in fish myelin. Biochim Biophys Acta 817:367–374

    Article  PubMed  CAS  Google Scholar 

  20. Inouye H (1979) An X-ray diffraction study of the nerve myelin sheath. PhD dissertation, Kyoto University, Kyoto, 260 pp

  21. Avila RL, Inouye H, Baek R, Yin X, Trapp BD, Feltri ML, Wrabetz L, Kirschner DA (2005) Structure and stability of internodal myelin in mouse models of hereditary neuropathy. J Neuropathol Exp Neurol 64:976–990

    PubMed  Google Scholar 

  22. Woods IG (2006) Maps, myelin, and you: Molecular genetic analysis of vertebrate development in the zebrafish model system. Stanford University School of Medicine, Stanford, 216 pp

    Google Scholar 

  23. Boulin CJ, Gabriel A, Koch MHJ (1988) Data acquisition system for linear and area X-ray detectors using delay-line readout. Nucl Instrum Methods A269:312–320

    CAS  Google Scholar 

  24. Gabriel A (1977) Position sensitive X-ray detectors. Rev Sci Instrum 48:1303–1305

    Article  Google Scholar 

  25. Blanton TN, Huang TC, Toraya H et al (1995) JCPDS-International Centre for Diffraction Data round robin study of silver behenate. A possible low-angle X-ray diffraction calibration standard. J Powder Diffraction 10:91–95

    CAS  Google Scholar 

  26. Huang TC, Toraya H, Blanton TN et al (1993) X-ray-powder diffraction analysis of silver behenate. A possible low-angle diffraction standard. J Appl Crystallogr 26:180–184

    Article  CAS  Google Scholar 

  27. Inouye H, Karthigasan J, Kirschner DA (1989) Membrane structure in isolated and intact myelins. Biophys J 56:129–137

    PubMed  CAS  Google Scholar 

  28. Caspar DLD, Kirschner DA (1971) Myelin membrane structure at 10 Å resolution. Nat New Biol 231:46–52

    Article  CAS  PubMed  Google Scholar 

  29. Kirschner DA, Ganser AL (1982) Myelin labeled with mercuric chloride. Asymmetric localization of phosphatidylethanolamine plasmalogen. J Mol Biol 157:635–658

    Article  PubMed  CAS  Google Scholar 

  30. Kirschner DA, Blaurock AE (1992) Organization, phylogenetic variations and dynamic transitions of myelin structure. In: Martenson RE (ed) Myelin: biology and chemistry. CRC, Boca Raton, pp. 3–78

    Google Scholar 

  31. Mateu L, Luzzati V, Vonasek E, Borgo M, Lachapelle F (1996) Order–disorder phenomena in myelinated nerve sheaths. VI. The effects of quaking, jimpy and shiverer mutations: An X-ray scattering study of mouse sciatic and optic nerves. J Mol Biol 256:319–329

    Article  PubMed  CAS  Google Scholar 

  32. Mateu L, Luzzati V, Villegas GM, Borgo M, Vargas R (1992) Order–disorder phenomena in myelinated nerve sheaths. IV. The disordering effects of high levels of local anaesthetics on rat sciatic and optic nerves. J Mol Biol 226:535–548

    Article  PubMed  CAS  Google Scholar 

  33. Waehneldt TV, Stoklas S, Jeserich G, Matthieu JM (1986) Central nervous system myelin of teleosts: comparative electrophoretic analysis of its proteins by staining and immunoblotting. Comp Biochem Physiol B 84:273–278

    Article  PubMed  CAS  Google Scholar 

  34. Ganser AL, Kerner AL, Brown BJ, Davisson MT, Kirschner DA (1988) A survey of neurological mutant mice. I. Lipid composition of myelinated tissue in known myelin mutants. Dev Neurosci 10:99–122

    PubMed  CAS  Google Scholar 

  35. Inouye H, Kirschner DA (1988) Membrane interactions in nerve myelin. I. Determination of surface charge from effects of pH and ionic strength on period. Biophys J 53:235–245

    PubMed  CAS  Google Scholar 

  36. Inouye H, Kirschner DA (1988) Membrane interactions in nerve myelin. II. Determination of surface charge from biochemical data. Biophys J 53:247–260

    Article  PubMed  CAS  Google Scholar 

  37. Worthington CR, McIntosh TJ (1976) An X-ray study of the condensed and separated states of sciatic nerve myelin. Biochim Biophys Acta 436:707–718

    Article  PubMed  CAS  Google Scholar 

  38. Melchior V, Hollingshead CJ, Caspar DL (1979) Divalent cations cooperatively stabilize close membrane contacts in myelin. Biochim Biophys Acta 554:204–226

    Article  PubMed  CAS  Google Scholar 

  39. Sedzik J, Kirschner DA (1992) Is myelin basic protein crystallizable? Neurochem Res 17:157–166

    Article  PubMed  CAS  Google Scholar 

  40. Ridsdale RA, Beniac DR, Tompkins TA, Moscarello MA, Harauz G (1997) Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J Biol Chem 272:4269–4275

    Article  PubMed  CAS  Google Scholar 

  41. Stoner GL (1984) Predicted folding of beta-structure in myelin basic protein. J Neurochem 43:433–447

    Article  PubMed  CAS  Google Scholar 

  42. Bates IR, Boggs JM, Feix JB, Harauz G (2003) Membrane-anchoring and charge effects in the interaction of myelin basic protein with lipid bilayers studied by site-directed spin labeling. J Biol Chem 278:29041–29047

    Article  PubMed  CAS  Google Scholar 

  43. Bates IR, Harauz G (2003) Molecular dynamics exposes alpha-helices in myelin basic protein. J Mol Model (Online) 9:290–297

    Article  CAS  Google Scholar 

  44. Jeserich G, Waehneldt TV (1987) Antigenic sites common to major fish myelin glycoproteins (IP) and to major tetrapod PNS myelin glycoprotein (Po) reside in the amino acid chains. Neurochem Res 12:825–829

    Article  PubMed  CAS  Google Scholar 

  45. Jeserich G, Waehneldt TV (1986) Characterization of antibodies against major fish CNS myelin proteins: immunoblot analysis and immunohistochemical localization of 36K and IP2 proteins in trout nerve tissue. J Neurosci Res 15:147–158

    Article  PubMed  CAS  Google Scholar 

  46. Thompson AJ, Cronin MS, Kirschner DA (2002) Myelin protein zero exists as dimers and tetramers in native membranes of Xenopus laevis peripheral nerve. J Neurosci Res 67:766–771

    Article  PubMed  CAS  Google Scholar 

  47. Uyemura K, Kitamura K, Miura M (1992) Structure and molecular biology of P0 protein. In: Martenson RE (eds) Myelin: biology and chemistry. CRC, Boca Raton, pp. 481–508

    Google Scholar 

  48. Burgisser P, Matthieu JM, Jeserich G, Waehneldt TV (1986) Myelin lipids: A phylogenetic study. Neurochem Res 11:1261–1272

    Article  PubMed  CAS  Google Scholar 

  49. Shapiro L, Doyle JP, Hensley P, Colman DR, Hendrickson WA (1996) Crystal structure of the extracellular domain from P0, the major structural protein of peripheral nerve myelin. Neuron 17:435–449

    Article  PubMed  CAS  Google Scholar 

  50. Moll W, Lanwert C, Jeserich G (2003) Molecular cloning, tissue expression, and partial characterization of the major fish CNS myelin protein 36k. Glia 44:57–66

    Article  PubMed  Google Scholar 

  51. Rosenbluth J (1980) Peripheral myelin in the mouse mutant Shiverer. J Comp Neurol 193:729–739

    Article  PubMed  CAS  Google Scholar 

  52. Inouye H, Ganser AL, Kirschner DA (1985) Shiverer and normal peripheral myelin compared: basic protein localization, membrane interactions, and lipid composition. J Neurochem 45:1911–1922

    Article  PubMed  CAS  Google Scholar 

  53. Lemke G, Axel R (1985) Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. Cell 40:501–508

    Article  PubMed  CAS  Google Scholar 

  54. Kazakova N, Li H, Mora A, Jessen KR, Mirsky R, Richardson WD, Smith HK (2006) A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Dev Biol, in press, DOI: 10.1016/j.ydbio.2006.03.020

  55. Parng C, Roy NM, Ton C, Lin Y, McGrath P (2006) Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods, in press, DOI: 10.1016/j.vascn.2006.04.004

Download references

Acknowledgments

We thank Drs William S. Talbot and Ian G. Woods (Stanford University) for providing the mutant zebrafish, Dr Deepak Sharma and Mr Xiao (Tony) Luo for helpful discussions and experimental assistance, Mr Zaid Haddadin for his assistance in calibrating the position-sensitive detector, the laboratory of Prof. T. Seyfried (Boston College) for assistance in lipid analysis, and Ms Abby A.R. Gross for editorial assistance. We acknowledge Dr G. Jeserich (University of Osnabruck, Germany) for providing the IP1 and IP2 antibodies. Supported by Boston College Institutional Research Support Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Kirschner.

Additional information

Special issue dedicated to Anthony Campagnoni.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11064-007-9280-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, R.L., Tevlin, B.R., Lees, J.P.B. et al. Myelin Structure and Composition in Zebrafish. Neurochem Res 32, 197–209 (2007). https://doi.org/10.1007/s11064-006-9136-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9136-5

Keywords

Navigation