Skip to main content
Log in

Paired-Pulse Facilitation of Transmitter Release at Different Levels of Extracellular Calcium Concentration

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

High-frequency synaptic activity can cause facilitation of transmitter release due to accumulation of “residual Ca2+” at the nerve terminal. However, the mechanism of this phenomenon is still under debate. Here we show that, using extracellular recording from frog cutaneous pectoris muscle, paired-pulse facilitation (PPF) at the frog neuro-muscular junction decays in two or three-exponential manner depending upon the extracellular Ca2+ concentration ([Ca2+]e). First, second and “early” PPF components are analyzed and described in this study. Considering the dependence of PPF on [Ca2+]e, existence of several specific high-affinity intra-terminal Ca2+-binding sites that underlie the facilitation of transmitter release at the frog neuro-muscular junction is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atluri PP, Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 16:5661–5671

    PubMed  CAS  Google Scholar 

  2. Atwood HL, Karunanithi S (2002) Diversification of synaptic strength: presynaptic elements. Nat Rev Neurosci 3:497–516

    Article  PubMed  CAS  Google Scholar 

  3. Barstad JA, Lilleheil G (1968) Transversely cut diaphragm preparation from rat. An adjuvant tool in the study of the physiology and pharmacology of the myoneural junction. Arch Int Pharmacodyn Ther 175:373–390

    PubMed  CAS  Google Scholar 

  4. Bertram R, Sherman A, Stanley EF (1996) Single-domain/bound calcium hypothesis of transmitter release and facilitation. J Neurophysiol 75:1919–1931

    PubMed  CAS  Google Scholar 

  5. Burgoyne RD, Clague MJ (2003) Calcium and calmodulin in membrane fusion. Biochim Biophys Acta 1641:137–143

    Article  PubMed  CAS  Google Scholar 

  6. DelCastillo J, Katz B (1954) Quantal components of the end-plate potential. J Physiol 124:560–573

    CAS  Google Scholar 

  7. Delaney KR, Tank DW (1994) A quantitative measurement of the dependence of short-term synaptic enhancement on presynaptic residual calcium. J Neurosci 14:5885–5902

    PubMed  CAS  Google Scholar 

  8. Dodge FA, Rahamimoff R (1967) Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J Physiol 193:419–432

    PubMed  CAS  Google Scholar 

  9. Fisher SA, Fischer TM, Carew TJ (1997) Multiple overlapping processes underlying short-term synaptic enhancement. Trends Neurosci 20:170–177

    Article  PubMed  CAS  Google Scholar 

  10. Helmchen F, Borst JG, Sakmann B (1997) Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys J 72(3):1458–1471

    PubMed  CAS  Google Scholar 

  11. Janz R, Sudhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24:687–700

    Article  PubMed  CAS  Google Scholar 

  12. Kamiya H, Zucker RS (1994) Residual Ca2+ and short-term synaptic plasticity. Nature 371:603–606

    Article  PubMed  CAS  Google Scholar 

  13. Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481–484

    PubMed  CAS  Google Scholar 

  14. King RD, Wiest MC, Montague PR (2001) Extracellular calcium depletion as a mechanism of short-term synaptic depression. J Neurophysiol 85:1952–1959

    PubMed  CAS  Google Scholar 

  15. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20(1):38–43

    Article  PubMed  CAS  Google Scholar 

  16. Llinas R, Sugimori M, Silver RB (1995) The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology 34:1443–1451

    Article  PubMed  CAS  Google Scholar 

  17. Mallart A, Martin AR (1967) An analysis of facilitation of transmitter release at the neuromuscular junction of the frog. J Physiol 193:679–694

    PubMed  Google Scholar 

  18. Rivosecchi R, Pongs O, Theil T, Mallart A (1994) Implication of frequenin in the facilitation of transmitter release in Drosophila. J Physiol 474:223–232

    PubMed  CAS  Google Scholar 

  19. Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262

    PubMed  CAS  Google Scholar 

  20. Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS (2002) Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33:411–424

    Article  PubMed  CAS  Google Scholar 

  21. Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48(3):485–498

    Article  PubMed  CAS  Google Scholar 

  22. Sugita S, Shin OH, Han W, Lao Y, Sudhof TC (2002) Synaptotagmins form a hierarchy of exocytotic Ca2+ sensors with distinct Ca2+ affinities. Embo J 21:270–280

    Article  PubMed  CAS  Google Scholar 

  23. vanderKloot W, Molgo J (1994) Quantal acetylcholine release at the vertebrate neuromuscular junction. Physiol Rev 74:899–991

    CAS  Google Scholar 

  24. Yamada WM, Zucker RS (1992) Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys J 61(3):671–682

    PubMed  CAS  Google Scholar 

  25. Zefirov AL, Mukhamedyarov MA, Gafurov BSh (2002) Role of potassium channels in facilitation of transmitter release from frog motor nerve ending (electrophysiology and mathematical simulation). Neurophysiology 34:17–27

    Article  CAS  Google Scholar 

  26. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research Grant 05-04-48428-а, and by Asklepios-Med Bt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Palotás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhamedyarov, M.A., Zefirov, A.L. & Palotás, A. Paired-Pulse Facilitation of Transmitter Release at Different Levels of Extracellular Calcium Concentration. Neurochem Res 31, 1055–1058 (2006). https://doi.org/10.1007/s11064-006-9115-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9115-x

Keywords

Navigation