Skip to main content
Log in

Ependymal Cell Differentiation and GLUT1 Expression is a Synchronous Process in the Ventricular Wall

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ependymal cells appear to be totally differentiated during the first 3 weeks in the mouse brain. Early during postnatal development ependymal cells differentiate and undergo metabolic activation, which is accompanied by increased glucose uptake. We propose that ependymal cells induce an overexpression of the glucose transporter, GLUT1, during the first 2 weeks after delivery in order to maintain the early metabolic activation. During the first postnatal day, GLUT1 is strongly induced in the upper region of the third ventricle and in the ventral area of the rostral cerebral aqueduct. During the next 4 days, GLUT1 is expressed in all differentiated ependymal cells of the third ventricle and in hypothalamic tanycytes. At the end of the first week, ependymal cell differentiation and GLUT1 overexpression is concentrated in the latero-ventral area of the aqueduct. We propose that ependymal cell differentiation and GLUT1 overexpression is a synchronous process in the ventricular wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Grove B. P. Williams D. Q. Li M. Hajihosseini A. Freidrich J. Price (1993) ArticleTitleMultiple restricted lineages in the embryonic rat cerebral cortex Development 117 553–561 Occurrence Handle8330526 Occurrence Handle1:STN:280:DyaK3szitFKjsw%3D%3D

    PubMed  CAS  Google Scholar 

  2. M. B. Luskin A. L. Pearlman J. R. Sanes (1988) ArticleTitleCell lineage in the cerebral cortex of mouse studies in vivo and in vitro with a recombinant retrovirus Neurons 1 635–647 Occurrence Handle1:STN:280:DyaK3c7ms1Gntg%3D%3D

    CAS  Google Scholar 

  3. A. D. Tramontin J. M. Garcia-Verdugo D. A. Lim A. Alvarez-Buylla (2003) ArticleTitlePostnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment Cereb. Cortex 13 580–587 Occurrence Handle10.1093/cercor/13.6.580 Occurrence Handle12764031

    Article  PubMed  Google Scholar 

  4. D. A. Lim A. D. Tramontin J. M. Trevejo D. G. Herrera J. M. Garcia-Verdugo A. Alvarez-Buylla (2000) ArticleTitleNoggin antagonizes BMP signaling to create a niche for adult neurogenesis Neuron 28 713–726 Occurrence Handle10.1016/S0896-6273(00)00148-3 Occurrence Handle11163261 Occurrence Handle1:CAS:528:DC%2BD3MXis1GqtA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  5. M. Bigio ParticleDel (1995) ArticleTitleThe ependyma: A protective barrier between brain and cerebrospinal fluid Glia 14 1–13 Occurrence Handle7615341

    PubMed  Google Scholar 

  6. J. Flament-Durand J. P. Brion (1985) ArticleTitleTanycytes: Morphology and functions: A review Int. Rev. Cytol. 96 121–155 Occurrence Handle2416706 Occurrence Handle1:STN:280:DyaL28%2FosVyntw%3D%3D

    PubMed  CAS  Google Scholar 

  7. S. Verleysdonk W. Hirschner J. Wellard M. Rapp M. Garcia F. Nualart B. Hamprecht (2004) ArticleTitleRegulation by insulin and insulin-like growth factor of 2-deoxyglucose uptake in primary ependymal cell cultures Neurochem. Res. 29 127–134 Occurrence Handle14992271 Occurrence Handle1:CAS:528:DC%2BD2cXlsFOk

    PubMed  CAS  Google Scholar 

  8. J. E. Bruni (1998) ArticleTitleEpendymal development, proliferation, and functions: A review Microsc Microsc. Res. Tech. 41 2–13 Occurrence Handle10.1002/(SICI)1097-0029(19980401)41:1<2::AID-JEMT2>3.0.CO;2-Z Occurrence Handle9550133 Occurrence Handle1:CAS:528:DyaK1cXisV2nsbs%3D

    Article  PubMed  CAS  Google Scholar 

  9. R. F. Keep H. C. Jones (1990) ArticleTitleA morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat Dev. Brain Res. 56 47–53 Occurrence Handle10.1016/0165-3806(90)90163-S Occurrence Handle1:STN:280:DyaK3M7itFOntw%3D%3D

    Article  CAS  Google Scholar 

  10. M. A. García M. Carrasco A. Godoy K. Reinicke V. P. Montecinos L. Aguayo J. C. Tapia J. C. Vera F. Nualart (2001) ArticleTitleElevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier J. Cell. Biochem. 80 491–503 Occurrence Handle11169733

    PubMed  Google Scholar 

  11. M. A. García C. Millán C. Balmaceda-Aguilera T. Castro H. Montecinos K. Reinicke J.C. Vera S. Oñate F. Nualart (2003) ArticleTitleHypothalamic ependymal-glial cells express the glucose transporter GLUT2, a protein involved in glucose sensing J. Neurochem. 86 709–724 Occurrence Handle12859684

    PubMed  Google Scholar 

  12. R. N. Kalaria S. A. Gravina J. W. Schmidley G. Perry S.I. Harik (1988) ArticleTitleThe glucose transporter of the human brain and blood-brain barrier Ann. Neurol. 24 757–764 Occurrence Handle10.1002/ana.410240610 Occurrence Handle3207358 Occurrence Handle1:CAS:528:DyaL1MXnt12mtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  13. F. Nualart A. Godoy K. Reinicke (1999) ArticleTitleExpression of the hexose transporters GLUT1 and GLUT2 during the early development of the human brain Brain Res. 824 97–104 Occurrence Handle10.1016/S0006-8993(99)01078-1 Occurrence Handle10095047 Occurrence Handle1:CAS:528:DyaK1MXhvVCnur0%3D

    Article  PubMed  CAS  Google Scholar 

  14. W. M. Pardridge R. J. Boado C. R. Farrell (1990) ArticleTitleBrain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier Studies with quantitative western blotting and in situ hybridization J. Biol. Chem. 265 18035–18040 Occurrence Handle2211679 Occurrence Handle1:CAS:528:DyaK3cXlvVyltrw%3D

    PubMed  CAS  Google Scholar 

  15. S. J. Vannucci (1994) ArticleTitleDevelopmental expression of GLUT1 and GLUT3 glucose transporters in rat brain J. Neurochem. 62 240–246 Occurrence Handle8263524 Occurrence Handle1:CAS:528:DyaK2cXnsVSqsw%3D%3D

    PubMed  CAS  Google Scholar 

  16. R. Sankar S. Thamotharan D. Shin K. H. Moley S. U. Devaskar (2002) ArticleTitleInsulin-responsive glucose transporters-GLUT8 and GLUT4 are expressed in the developing mammalian brain Brain Res. Mol. Brain Res. 107 157–165 Occurrence Handle12425944 Occurrence Handle1:CAS:528:DC%2BD38XosFeqsL0%3D

    PubMed  CAS  Google Scholar 

  17. F. Maekawa Y. Toyoda N. Torii I. Miwa R. C. Thompson D. Foster S. Tsukahara H. Tsukamura K. Maeda (2000) ArticleTitleLocalization of glucokinase-like immunoreactivity in the rat lower brain stem: for possible location of brain glucose-sensing mechanisms Endocrinology 141 375–384 Occurrence Handle10.1210/en.141.1.375 Occurrence Handle10614660 Occurrence Handle1:CAS:528:DC%2BD3cXkslOl

    Article  PubMed  CAS  Google Scholar 

  18. S. I. Harik A. K. Hall P. Richey. L. Andersson P. Lundahl G. Perry (1993) ArticleTitleOntogeny of the erythroid/HepG2-type glucose transporter (GLUT-1) in the rat nervous system Brain Res. Dev. Brain Res. 72 41–49 Occurrence Handle8453764 Occurrence Handle1:CAS:528:DyaK3sXktVGmu7s%3D

    PubMed  CAS  Google Scholar 

  19. C. A. Bondy W. H. Lee J. Zhou (1992) ArticleTitleOntogeny and cellular distribution of brain glucose transporter gene expression Mol. Cell. Neurosci. 3 305–314 Occurrence Handle1:CAS:528:DyaK38XlvVyrtb0%3D Occurrence Handle10.1016/1044-7431(92)90027-Y

    Article  CAS  Google Scholar 

  20. H. Werner M. Adamo W. L. Lowe SuffixJr. C. T. Roberts SuffixJr. D. LeRoith (1989) ArticleTitleDevelopmental regulation of rat brain/Hep G2 glucose transporter gene expression Mol. Endocrinol. 3 273–179 Occurrence Handle2710134 Occurrence Handle1:CAS:528:DyaL1MXhsFWku7s%3D Occurrence Handle10.1210/mend-3-2-273

    Article  PubMed  CAS  Google Scholar 

  21. A. Hogan S. Heyner M. J. Charron N. G. Copeland D. J. Gilbert N.A. Jenkins B. Thorens G. A. Schultz (1991) ArticleTitleGlucose transporter gene expression in early mouse embryos Development 113 363–72 Occurrence Handle1765007 Occurrence Handle1:CAS:528:DyaK38XnslKqsw%3D%3D

    PubMed  CAS  Google Scholar 

  22. W. Sivitz S. DeSautel P. S. Walker J. E. Pessin (1989) ArticleTitleRegulation of the glucose transporter in developing rat brain Endocrinology 124 1875–1880 Occurrence Handle2924729 Occurrence Handle1:CAS:528:DyaL1MXhslSktb4%3D Occurrence Handle10.1210/endo-124-4-1875

    Article  PubMed  CAS  Google Scholar 

  23. A. Alvarez-Buylla M. Theelen F. Nottebohm (1990) ArticleTitleProliferation “hot spots” in adult avian ventricular zone reveal radial cell division Neuron 5 101–109 Occurrence Handle2369518 Occurrence Handle1:STN:280:DyaK3czhsFWmtw%3D%3D

    PubMed  CAS  Google Scholar 

  24. J. M. Garcia-Verdugo S. Ferron N. Flames L. Collado E. Desfilis E. Font (2002) ArticleTitleThe proliferative ventricular zone in adult vertebrates: A comparative study using reptiles, birds, and mammals Brain Res. Bull. 57 765–775 Occurrence Handle12031273

    PubMed  Google Scholar 

  25. S. A. Goldman F. Nottebohm (1983) ArticleTitleNeuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain Proc. Natl. Acad. Sci. USA 80 2390–2394 Occurrence Handle6572982 Occurrence Handle1:CAS:528:DyaL3sXhvFGgsL0%3D

    PubMed  CAS  Google Scholar 

  26. A. M. Cataldo R. D. Broadwell (1986) ArticleTitleCytochemical identification of cerebral glycogen and glucose-6-phosphatase activity under normal and experimental conditions. II. Choroid plexus and ependymal epithelia, endothelia and pericytes J. Neurocytol. 15 511–524 Occurrence Handle10.1007/BF01611733 Occurrence Handle3018177 Occurrence Handle1:CAS:528:DyaL28Xls12ntb4%3D

    Article  PubMed  CAS  Google Scholar 

  27. B. Pfeiffer K. Elmer W. Roggendorf P. H. Reinhart B. Hamprecht (1990) ArticleTitleImmunohistochemical demonstration of glycogen phosphorylase in rat brain slices Histochemistry 94 73–80 Occurrence Handle10.1007/BF00266792 Occurrence Handle2351562 Occurrence Handle1:CAS:528:DyaK3cXktF2rsL8%3D

    Article  PubMed  CAS  Google Scholar 

  28. García M. A., Salazar K., Millan C., Rodriguez F., Montecinos H., Caprile T., Silva C., Cortes C., Reinicke K., Vera J. C., Aguayo L. G., Olate J., Molina B., and Nualart. F. 2005. Sodium vitamin C cotransporter SVCT2 is expressed in hypothalamic glial cells. Glia 50: 32–47

  29. B. Peruzzo F. E. Pastor J. L. Blazquez K. Schobitz B. Pelaez P. Amat E. M. Rodríguez (2000) ArticleTitleA second look at the barriers of the medial basal hypothalamus Exp. Brain Res. 132 10–26 Occurrence Handle10.1007/s002219900289 Occurrence Handle10836632 Occurrence Handle1:STN:280:DC%2BD3cvht1Siuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Silva-Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva-Alvarez, C., Carrasco, M., Balmaceda-Aguilera, C. et al. Ependymal Cell Differentiation and GLUT1 Expression is a Synchronous Process in the Ventricular Wall. Neurochem Res 30, 1227–1236 (2005). https://doi.org/10.1007/s11064-005-8794-z

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-8794-z

Keywords

Navigation