Skip to main content
Log in

Generalized Discriminant Local Median Preserving Projections (GDLMPP) for Face Recognition

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

To solve the problem of the singularity of the within-class scatter matrix in discriminant local median preserving projections (DLMPP) in the case of small sample size problem, an algorithm named generalized local median preserving projection (GDLMPP) is proposed. To solve the small size problem, GDLMPP firstly transforms the samples into a lower dimensional space equivalently, and then the optimal projection matrix can be solved. The theoretical analysis shows that GDLMPP is equivalent to DLMPP when the within-class scatter matrix is non-singular. Finally, we conduct extensive experiments to prove that the proposed algorithm can provide a better representation and achieve higher face recognition rates than previous approaches such as LPP, LDA and DLMPP on the ORL, Yale and AR face databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recogn 44(8):1649–1657

    Article  MATH  Google Scholar 

  2. Yang W, Wang J, Ren M et al (2009) Feature extraction based on Laplacian bidirectional maximum margin criterion. Pattern Recogn 42(11):2327–2334

    Article  MATH  Google Scholar 

  3. Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27

    Article  Google Scholar 

  4. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  5. Vidal R, Ma Y, Sastry SS (2016) Robust principal component analysis. Generalized principal component analysis. Springer, New York, pp 63–122

    MATH  Google Scholar 

  6. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  7. Wang S, Lu J, Gu X et al (2016) Semi-supervised linear discriminant analysis for dimension reduction and classification. Pattern Recogn 57:179–189

    Article  Google Scholar 

  8. He XF, Yan SC, Hu YX et al (2005) Face recognition using Laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  9. Wen Y, Yang S, Hou L, et al (2016) Face recognition using locality sparsity preserving projections. In: 2016 international joint conference on neural networks (IJCNN), IEEE, pp 3600–3607

  10. Yu WW, Teng XL, Liu CQ (2006) Face recognition using discriminant locality preserving projections. Image Vis Comput 24(3):239–248

    Article  Google Scholar 

  11. Huang P, Tang Z (2012) Discriminant of local median preserving projection with its application to face recognition. J Comput Aided Des Comput Graph 24(11):1420–1425

    Google Scholar 

  12. Wan M, Li M, Yang G, Gai S, Jin Z (2014) Feature extraction using two-dimensional maximum embedding difference. Inf Sci 274:55–69

    Article  Google Scholar 

  13. Lai Z, Wong W, Xu Y, Yang J, Tang J, Zhang D (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735

    Article  MathSciNet  Google Scholar 

  14. Ning X, Li W, LI H et al (2016) Uncorrelated local preserving discriminant analysis based on bionics. J Comput Res Dev 53(11):2623–2629

    Google Scholar 

  15. Ma X, Tan Y (2014) Face recognition based on discriminant sparse preserving embedding. Acta Automatica Sinica 40(1):73–82

    MATH  Google Scholar 

  16. Zhao Z, Hao X (2013) Linear locality preserving and discriminating projection for face recognition. J Electron Inf Technol 35(2):463–467

    Article  MathSciNet  Google Scholar 

  17. Yin J, Zeng W, Wei L (2016) Optimal feature extraction methods for classification methods and their applications to biometric recognition. Knowl Based Syst 99:112–122

    Article  Google Scholar 

  18. Yin J, Wei L, Song M, Zeng W (2016) Optimized projection for collaborative representation based classification and its applications to face recognition. Pattern Recogn Lett 73:83–90

    Article  Google Scholar 

  19. Wan M, Lai Z, Yang G et al (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst 318:120–131

    Article  MathSciNet  Google Scholar 

  20. Yang J, Zhang D, Yang J et al (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Key R&D Program Grant No. 2017YFC0804002, the National Science Foundation of China under Grant Nos. 61462064, 6177227, 61362031, 61463008, 61403188, 61503195, 61603192, and the China Postdoctoral Science Foundation under Grant No. 2016M600674, the Natural Science Fund of Jiangsu Province under Grant BK20161580, BK20171494 and China’s Aviation Science (No. 20145556011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hua Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, MH., Lai, ZH. Generalized Discriminant Local Median Preserving Projections (GDLMPP) for Face Recognition. Neural Process Lett 49, 951–963 (2019). https://doi.org/10.1007/s11063-018-9840-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9840-6

Keywords

Navigation