Skip to main content
Log in

Further Improvement on Delay-Dependent Global Robust Exponential Stability for Delayed Cellular Neural Networks with Time-Varying Delays

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper is concerned with global robust exponential stability for a class of delayed cellular neural networks with time-varying delays. Some new sufficient conditions are presented for the uniqueness of equilibrium point and the global stability of cellular neural networks with time varying delay by constructing Lyapunov functional and using linear matrix inequality and the integral inequality approach. Numerical examples are illustrated to show the effectiveness of the proposed method. From the simulation results, significant improvement over the recent results can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arik S (2002) An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans Neural Netw 13(5):1239–1242

    Article  Google Scholar 

  2. Boyd SL, Feron GE, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  3. Chandrasekar A, Murugesu R, Rakkiyappan R (2016) Exponential stability for Markovian jumping stochastic BAM neural networks with mode-dependent probabilistic time-varying delays and impulse control. Complexity 21(5):59–72

    Article  MathSciNet  Google Scholar 

  4. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35(10):1257–1272

    Article  MathSciNet  MATH  Google Scholar 

  5. Chua LO, Roska T (2002) Cellular neural networks and visual computing. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Gahinet P, Nemirovski A, Laub A, Chilali M (1995) LMI control toolbox user’s guide. The Mathworks, Massachusetts

    Google Scholar 

  7. Lakshmanan S, Balasubramaniam P (2011) New results of robust stability analysis for neutral-type neural networks with time-varying delays and Markovian jumping parameters. Can J Phys 89(8):827–840

    Article  Google Scholar 

  8. Lakshmanan S, Park JH, Jung HY, Balasubramaniam P (2012) Design of state estimator for neural networks with leakage, discrete and distributed delays. Appl Math Comput 218(22):11297–11310

    MathSciNet  MATH  Google Scholar 

  9. Lee TH, Lakshmanan S, Park JH, Balasubramaniam P (2013) State estimation for genetic regulatory networks with mode-dependent leakage delays, time-varying delays, and Markovian jumping parameters. IEEE Trans Nanobiosci 12(4):363–375

    Article  Google Scholar 

  10. Liu PL (2003) Exponential stability for linear time-delay systems with delay dependence. J Frankl Inst 340:481–488

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu PL (2003) Robust exponential stabilization for uncertain systems with state and control delay. Int J Syst Sci 34(12–13):675–682

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu PL (2009) Robust exponential stability for uncertain time-varying delay systems with delay dependence. J Frankl Inst 346(10):958–968

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu PL (2012) Global asymptotic stability for neural networks systems with discrete and distributed delay. ICIC Express Lett Part B Appl 1(2):233–240

    Google Scholar 

  14. Liu PL (2012) Further results on the exponential stability criteria for time delay singular systems with delay-dependence. Int J Innov Comput Inf Control 8(6):4015–4024

    Google Scholar 

  15. Liu PL (2013) Improved delay-dependent robust stability criteria for recurrent neural networks with time-varying delays. ISA Trans 52(1):30–35

    Article  Google Scholar 

  16. Liu PL (2013) Delay-dependent global exponential robust stability for delayed cellular neural networks with time-varying delay. ISA Trans 52(6):711–716

    Article  Google Scholar 

  17. Park JH (2006) Global exponential stability of cellular neural networks with variable delays. Appl Math Comput 183(2):1214–1219

    MathSciNet  MATH  Google Scholar 

  18. Park JH (2007) Further note on global exponential stability of uncertain cellular neural networks with variable delays. Appl Math Comput 188(1):850–854

    MathSciNet  MATH  Google Scholar 

  19. Rakkiyappan R, Chandrasekar A, Lakshmanan S, Park JH (2015) Exponential stability for Markovian jumping stochastic BAM neural networks with mode-dependent probabilistic time-varying delays and impulse control. Complexity 20(3):39–65

    Article  MathSciNet  Google Scholar 

  20. Rakkiyappan R, Chandrasekar A, Lakshmanan S (2016) Stochastic sampled data robust stabilisation of T-S fuzzy neutral systems with randomly occurring uncertainties and time-varying delays. Int J Syst Sci 47(10):2247–2263

    Article  MathSciNet  MATH  Google Scholar 

  21. Roska T, Chua LO (1992) Cellular neural networks with nonlinear and delay-type template. Int J Circuit Theory Appl 20(4):469–481

    Article  MATH  Google Scholar 

  22. Xie JC, Chen CP, Liu PL, Jeng YC (2014) Robust exponential stability analysis for delayed neural networks with time-varying delay. Adv Differ Equ 2014:131–147

    Article  MathSciNet  Google Scholar 

  23. Yu GJ, Lu CY, Tsai JSH, Su TJ, Liu BD (2003) Stability of cellular neural networks with time-varying delay. IEEE Trans Circuits Syst 50(5):677–679

    Article  Google Scholar 

  24. Zhang Q, Wei X, Xu J (2005) Delay-dependent exponential stability of cellular neural networks with time-varying delays. Chaos Solitons Fractals 23(4):1363–1369

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang Q, Wei X, Xu J (2005) On global exponential stability of delayed cellular neural networks with time-varying delays. Appl Math Comput 162(2):679–686

    MathSciNet  MATH  Google Scholar 

  26. Zhu QX, Cao J (2010) Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans Neural Netw 21(8):1314–1325

    Article  Google Scholar 

  27. Zhu QX, Li X, Yang XS (2011) Exponential stability for stochastic reaction-diffusion BAM neural networks with time-varying and distributed delays. Appl Math Comput 217(13):6078–6091

    MathSciNet  MATH  Google Scholar 

  28. Zhu QX, Cao J (2011) Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays. IEEE Trans Syst Man Cybern B Cybern 41(2):341–353

    Google Scholar 

  29. Zhu QX, Cao J (2012) Stability of Markovian jump neural networks with impulse control and time varying delays. Nonlinear Anal Real World Appl 13(5):2259–2270

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu QX, Rakkiyappan R, Chandrasekar A (2014) Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control. Neurocomputing 136:136–151

    Article  Google Scholar 

  31. Zhu QX, Cao J, Rakkiyappan R (2015) Exponential input-to-state stability of stochastic Cohen–Grossberg neural networks with mixed delays. Nonlinear Dyn 79(2):1085–1098

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin-Lin Liu.

Appendix A: Proof of Lemma 1

Appendix A: Proof of Lemma 1

For any positive semi-definite matrices

$$\begin{aligned} \hbox {X}=\left[ {{\begin{array}{l@{\quad }l@{\quad }l} \hbox {X}_{11} &{} \hbox {X}_{12} &{} \hbox {X}_{13} \\ \hbox {X}_{12}^T &{} \hbox {X}_{22} &{} \hbox {X}_{23} \\ \hbox {X}_{13}^T &{} \hbox {X}_{23}^T &{} \hbox {X}_{33} \end{array} }} \right] \ge 0, \end{aligned}$$
(A1)

the following integral inequality holds

$$\begin{aligned}&-\int _{t-h(t)}^t {{\dot{x}}^T (s){X}_{33} \dot{x}(s)ds} \nonumber \\&\quad \le \int _{t-h(t)}^t {\left[ {{ {{x}^T (t)}\quad {{x}^T (t-h(t))}\quad {{\dot{x}}^T (s)} }} \right] } \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {{X}_{11} }&{} {{X}_{12} }&{} {{X}_{13} } \\ {{X}_{12}^T }&{} {{X}_{22} }&{} {{X}_{23} } \\ {{X}_{13}^T }&{} {{X}_{23}^T }&{} 0 \end{array} }} \right] \left[ {{\begin{array}{l} {x(t)} \\ {x(t-h(t))} \\ {\dot{x}(s)} \\ \end{array} }} \right] ds\nonumber \\ \end{aligned}$$
(A2)

Proof

The New-Leibniz formula and integral inequality approach are used to derive the lemma; they are stated below:

$$\begin{aligned}&-\int _{t-h(t)}^t {{\dot{x}}^T (s){X}_{33} \dot{x}(s)ds} \nonumber \\&\quad \le \int _{t-h(t)}^t {\left[ {{ {{x}^T (t)}\quad {{x}^T (t-h(t))}\quad {{\dot{x}}^T (s)} }} \right] } \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {{X}_{11} }&{} {{X}_{12} }&{} {{X}_{13} } \\ {{X}_{12}^T }&{} {{X}_{22} }&{} {{X}_{23} } \\ {{X}_{13}^T }&{} {{X}_{23}^T }&{} 0 \end{array} }} \right] \left[ {{\begin{array}{l} {x(t)} \\ {x(t-h(t))} \\ {\dot{x}(s)} \\ \end{array} }} \right] ds \nonumber \\&\quad \le {x}^T (t)h{X}_{11} x(t)+{x}^T (t)h{X}_{12} x(t-h(t))+{x}^T (t){X}_{13} \int _{t-h(t)}^t {\dot{x}(s)ds} +{x}^T (t-h(t))\mathop {hX}\nolimits _{12}^T x(t) \nonumber \\&\qquad +\,{x}^T (t-h(t))h{X}_{22} x(t-h(t))+{x}^T (t-h(t)){X}_{23} \int _{t-h(t)}^t {\dot{x}(s)ds} \nonumber \\&\qquad +\,\int _{t-h(t)}^t {{\dot{x}}^T (s)ds} {X}_{13}^T x(t)+\int _{t-h(t)}^t {{\dot{x}}^T (s)ds} {X}_{23}^T x(t-h(t))\nonumber \\&\quad ={x}^T (t)[h{X}_{11} +{X}_{13} +{X}_{13}^T ]x(t)+{x}^T (t)[h{X}_{12} -{X}_{13} +{X}_{23}^T ]x(t-h(t)) \nonumber \\&\qquad +\,{x}^T (t-h(t))[h{X}_{12}^T -{X}_{13}^T +{X}_{23} ]x(t)\nonumber \\&\qquad +\,{x}^T (t-h(t))[h{X}_{22} -{X}_{23} -{X}_{23}^T ]x(t-h(t)) \end{aligned}$$
(A3)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, PL. Further Improvement on Delay-Dependent Global Robust Exponential Stability for Delayed Cellular Neural Networks with Time-Varying Delays. Neural Process Lett 47, 1177–1195 (2018). https://doi.org/10.1007/s11063-017-9683-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9683-6

Keywords

Navigation