Skip to main content
Log in

On a Stabilization Problem of Nonlinear Programming Neural Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Intrinsically, Lagrange multipliers in nonlinear programming algorithms play a regulating role in the process of searching optimal solution of constrained optimization problems. Hence, they can be regarded as the counterpart of control input variables in control systems. From this perspective, it is demonstrated that constructing nonlinear programming neural networks may be formulated into solving servomechanism problems with unknown equilibrium point which coincides with optimal solution. In this paper, under second-order sufficient assumption of nonlinear programming problems, a dynamic output feedback control law analogous to that of nonlinear servomechanism problems is proposed to stabilize the corresponding nonlinear programming neural networks. Moreover, the asymptotical stability is shown by Lyapunov First Approximation Principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazaraa MS, Sherali HD, Shetty CM (1993) Nonlinear programming: theory and algorithms 2nd edn. Wiley, New York

    MATH  Google Scholar 

  2. Kinderlehrer D, Stampcchia G (1980) An introduction to variational inequalities and their applications. Academic, New York

    MATH  Google Scholar 

  3. Facchinei F, Fischer A, Kanzow C (1999) A simply constrained optimization reformulation of KKT systems arising from variational inequalities. Appl Math Optim 40: 19–37

    Article  MATH  MathSciNet  Google Scholar 

  4. Solodov MV, Tseng P (1996) Modified projection-type methods for monotone variational inequalities. SIAM J Control Optim 2: 1814–1830

    Article  MathSciNet  Google Scholar 

  5. Wachter A, Biegler LT (2005) Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J Optim 16: 1–31

    Article  MathSciNet  Google Scholar 

  6. Tank DW, Hopfield JJ (1986) Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit. IEEE Trans Circuits Syst CAS 33(5): 533–541

    Article  Google Scholar 

  7. Chua LO, Lin G-N (1984) Nonlinear programming without computation. IEEE Trans Circuits Syst CAS 31(2): 182–188

    Article  MathSciNet  Google Scholar 

  8. Kennedy MP, Chua LO (1986) Unifying the tank and Hopeld linear programming circuit and the canonical nonlinear programming circuit of Chua and Lin. IEEE Trans Circuits Syst CAS 34(2): 210–214

    MathSciNet  Google Scholar 

  9. Lillo WE, Loh MH, Hui S, Zak SH (1993) On solving constrained optimization problems with neural networks: a penalty method approach. IEEE Trans Neural Netw 4(6): 931–940

    Article  Google Scholar 

  10. Rodriguez-Vazquez A, Dominguez-Castro R, Rueda A, Huertas JL, Sanchez-Sinencio E (1990) Nonlinear switched-capacitor neural networks for optimization problems. IEEE Trans Circuits Syst 37(3): 384–398

    Article  MathSciNet  Google Scholar 

  11. Lillo WE, Hui S, Zak SH (1993) Neural networks for constrained optimization problems. Int J Circuit Theory Appl 21: 385–399

    Article  MATH  Google Scholar 

  12. Cichocki A, Unbehauen R (1993) Neural networks for optimization and signal processing. Wiley, New York

    MATH  Google Scholar 

  13. Zak SH, Upatising V, Hui S (1995) Solving linear programming problems with neural networks: a comparative study. IEEE Trans Neural Netw 6(1): 94–103

    Article  Google Scholar 

  14. Chong E, Hui S, Zak SH (1999) An analysis of a class of neural networks for solving linear programming problems. IEEE Trans Autom Control 44(11): 1995–2006

    Article  MATH  MathSciNet  Google Scholar 

  15. Forti M, Nistri P, Quincampoix M (2004) Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans Circuits Syst I Reg Pap 51(9): 1741–1754

    Article  MathSciNet  Google Scholar 

  16. Forti M, Nistri P, Quincampoix M (2006) Convergence of neural networks for programming problems via a nonsmooth Lojasiewicz inequality. IEEE Trans Neural Netw 17(6): 1471–1486

    Article  Google Scholar 

  17. Zhang S, Constandinides AG (1992) Lagrange programming neural networks. IEEE Trans Circuits Syst II, Analog Digit Signal Process 39(7): 441–452

    Article  MATH  Google Scholar 

  18. Zhang S, Zhu X, Zou L-H (1992) Second-order neural nets for constrained optimization. IEEE Trans Neural Netw 3(6): 1021–1024

    Article  Google Scholar 

  19. Xia Y (2003) Global convergence analysis of Lagrangian networks. IEEE Trans Circuits Syst I, Fund Theory Appl 50(6): 818–822

    Article  Google Scholar 

  20. Huang YC (2002) A novel method to handle inequality constraints for convex programming neural network. Neural Process Lett 16(1): 17–27

    Article  MATH  Google Scholar 

  21. Huang YC (2005) Lagrange-type neural networks for nonlinear programming problems with inequality constraints. In: Proceeding of the 44th conference on decision and control

  22. Xia Y (1996) A new neural network for solving linear and quadratic programming problems. IEEE Trans Neural Netw 7(6): 1544–1547

    Article  Google Scholar 

  23. Xia Y, Wang J (2000) A recurrent neural network for solving linear projection equations. Neural Netw 13: 337–350

    Article  Google Scholar 

  24. Zhang Y, Wang J (2002) A dual neural network for convex quadratic programming subject to linear equality and inequality constraints. Phys Lett A 298: 271–278

    Article  MATH  MathSciNet  Google Scholar 

  25. Xia Y, Feng G, Wang J (2004) A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations. Neural Netw 17: 1003–1015

    Article  MATH  Google Scholar 

  26. Gao X-B, Liao L-Z, Xue W (2004) A neural network for a class of convex quadratic minimax problems with constraints. IEEE Trans Neural Netw 15(3): 622–628

    Article  Google Scholar 

  27. Xia Y, Wang J (1998) A general methodology for designing globally convergent optimization neural networks. IEEE Trans Neural Netw 9(6): 1331–1343

    Article  Google Scholar 

  28. Liang X-B, Wang J (2000) A recurrent neural network for nonlinear optimization with a continuously differentiable objective function and bound constraints. IEEE Trans Neural Netw 11(6): 1251–1262

    Article  Google Scholar 

  29. Xia Y, Leung H, Wang J (2002) Aprojection neural network and its application to constrained optimization problems. IEEE Trans Circuits Syst I, Fund Theory Appl 49(4): 447–458

    Article  MathSciNet  Google Scholar 

  30. Tao Q, Cao J, Xue M, Qiao H (2001) A high performance neural network for solving nonlinear programming problems with hybrid constraints. Phys Lett A 288(2): 88–94

    Article  MATH  MathSciNet  Google Scholar 

  31. Gao X-B (2004) A novel neural network for nonlinear convex programming. IEEE Trans Neural Netw 15(3): 613–621

    Article  Google Scholar 

  32. Xia Y, Wang J (2005) A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Trans Neural Netw 16(2): 379–386

    Article  Google Scholar 

  33. Gao X-B (2003) Exponential stability of globally projected dynamic systems. IEEE Trans Neural Netw 14(2): 426–431

    Article  Google Scholar 

  34. Xia Y, Wang J (2004) A general projection neural network for solving monotone variational inequality and related optimization problems. IEEE Trans Neural Netw 15(2): 318–328

    Article  MathSciNet  Google Scholar 

  35. Gao X-B, Liao L-Z, Qi L (2005) A novel neural network for variational inequalities with linear and nonlinear constraints. IEEE Trans Neural Netw 16(6): 1305–1317

    Article  Google Scholar 

  36. Hu X, Wang J (2006) Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans Neural Netw 17(6): 1487–1499

    Article  Google Scholar 

  37. Hu X, Wang J (2007) Solving generally constrained generalized linear variational inequalities using the general projection neural networks. IEEE Trans Neural Netw 18(6): 1697–1708

    Article  Google Scholar 

  38. Bertsekas DP (1999) Nonlinear programming 2nd edn. Massachusetts Athena Scientific, Belmont

    MATH  Google Scholar 

  39. Bertsekas DP (1982) Constrainted optimization and lagrange methods. Academic Press, New York

    Google Scholar 

  40. Avriel M (1976) Nonlinear programming analysis and methods. Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  41. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    Book  MATH  Google Scholar 

  42. Rockafellar RT (1993) Lagrange multiplier and optimality. SIAM Rev 35: 183–238

    Article  MATH  MathSciNet  Google Scholar 

  43. Isidori A (1995) Nonlinear control systems. Springer, New York

    MATH  Google Scholar 

  44. Isidori A, Byrnes CI (1990) Output regulation of nonlinear systems. IEEE Trans Autom Control 35(2): 880–885

    Article  MathSciNet  Google Scholar 

  45. Huang J, Chen ZY (2004) A general framework for tackling the output regulation problem. IEEE Trans Autom Control 49(12): 2203–2218

    Article  Google Scholar 

  46. Byrnes CI, Isidori A (2003) Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Trans Autom Control 48(10): 1712–1723

    Article  MathSciNet  Google Scholar 

  47. Byrnes CI, Isidori A (2000) Output regulation for nonlinear systems: an overview. Int J Robust Nonlinear Control 10: 323–337

    Article  MATH  MathSciNet  Google Scholar 

  48. Davison EJ (1976) The Robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans Autom Control 21(1): 25–34

    Article  MATH  MathSciNet  Google Scholar 

  49. Francis BA (1977) The linear multivariable regulator problem. SIAM J Control Optim 14: 486–505

    Article  MathSciNet  Google Scholar 

  50. Francis BA, Wonham WM (1976) The internal model principle of control theory. Automatica 12(5): 457–465

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuancan Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y. On a Stabilization Problem of Nonlinear Programming Neural Networks. Neural Process Lett 31, 93–103 (2010). https://doi.org/10.1007/s11063-010-9129-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-010-9129-x

Keywords

Navigation