Skip to main content
Log in

Local Oscillatory Properties of the Dendritic Membrane of Hippocampal Pyramidal Neurons: a Simulation Study

  • Published:
Neurophysiology Aims and scope

Foci of epileptic activity, generated as a result of synchronization of periodic burst discharges in neuronal networks, are often localized in the hippocampus. Using a model approach, we investigated the possibility of and biophysical conditions for the appearance of local oscillatory processes in dendrites possessing voltage-dependent channels (which is typical of pyramidal neurons of the hippocampus). The study was performed on a computer model of the membrane with active conductivities inherent in dendrites of pyramidal neurons of the CA3 area. It was found that such a membrane compartment subjected to tonic synaptic excitatory influences can function as a local generator of stable depolarization of a low or a high level or as a generator producing membrane potential oscillations (local oscillator). Each of these modes corresponds to a certain range of the synaptic excitation intensity; with increasing temperature, the range within which the oscillator properties are manifested is narrowed, while the range within which high-level stable depolarization is generated is expanded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rudolph and A. Destexhe, “The discharge variability of neocortical neurons during high-conductance states,” Neuroscience, 119 (3), 855-873 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. S. M. Korogod and S. Tyč-Dumont, Electrical Dynamics of the Dendritic Space, Cambridge Univ. Press, Cambridge (2009).

    Book  Google Scholar 

  3. I. B. Kulagina, A. V. Kaspirzhny, and S. M. Korogod, “Organization of activity of hippocampal pyramidal neurons under coactiavtion of dendritic glutamate-and GABA-sensitive receptors: a simulation study,” Neurophysiology, 46, No. 2, 99-107 (2014).

    Article  CAS  Google Scholar 

  4. I. B. Kulagina, S. M. Korogod, G. Horcholle-Bossavitt, et al., “The electro-dynamics of the dendritic space in Purkinje cells of the cerebellum,” Arch. Ital. Biol., 145, Nos. 3/4, 211-233 (2007).

    CAS  PubMed  Google Scholar 

  5. M. W. H. Remme, M. Lengyel, and B. S. Gutkin, “The role of ongoing dendritic oscillations in single-neuron dynamics,” PLoS Comput. Biol., 5, No. 9, e1000493 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge Univ. Press, Cambridge (2006).

    Book  Google Scholar 

  7. P. Hemond, D. Epstein, A. Boley, et al., “Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b,” Hippocampus, 18, No. 4, 411-424 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. R. R. Llinás, “Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective,” Front. Cell Neurosci., 8, 320 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Das, R. K. Rathour, and R. Narayanan, “Strings on a violin: location dependence of frequency tuning in active dendrites,” Front. Cell Neurosci., 11, 72 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  10. S. M. Korogod and L. E. Demianenko, “Temperature deactivation of depolarizing TRP-current as a mechanism of neuronal activity inhibition during hypothermia,” Neurophysiology, 48 , Nos. 5/6, 406-414 (2016).

    Google Scholar 

  11. L. E. Demianenko, E. P. Poddubnaya, I. A. Makedonsky, et al., “Hypothermic suppression of epileptiform bursting activity of a hyppocampal granule neuron possessing thermosensitive TRP channels (a model study: biophysical and clinical aspects),” Neurophysiology, 49, No. 1, 8-18 (2017).

    Article  CAS  Google Scholar 

  12. D. G. Amaral, “Emerging principles of intrinsic hippocampal organization,” Curr. Opin. Neurobiol., 3, No. 2, 225-229 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. D. A. McCormick and D. Contreras, “On the cellular and network bases of epileptic seizures,” Annu. Rev. Physiol., 63, 815-846 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. R. K. S. Wong, R. Miles, and R. D. Traub, “Local circuit interactions in synchronization of cortical neurones,” J. Exp. Biol., 112, No. 1, 169-178 (1984).

    CAS  PubMed  Google Scholar 

  15. G. K. Motamedi, R. P. Lesser, and S. Vicini, “Therapeutic brain hypothermia, its mechanisms of action, and its prospects as a treatment for epilepsy,” Epilepsia, 54, No. 6, 959-970 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kaspirzhnyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaspirzhnyi, A.V. Local Oscillatory Properties of the Dendritic Membrane of Hippocampal Pyramidal Neurons: a Simulation Study. Neurophysiology 49, 178–182 (2017). https://doi.org/10.1007/s11062-017-9671-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9671-5

Keywords

Navigation