Skip to main content
Log in

Features of EEG Activity Related to Realization of Cyclic Unimanual and Bimanual Hand Movements in Humans

  • Published:
Neurophysiology Aims and scope

In 10 tested dextral subjects, EEG activity was recorded during the performance of unimanual and bimanual cyclic movements of the hands and fingers. The movements corresponded to clenching the fingers into a fist and the subsequent unclenching of the fingers. The test consisted of four successive stages, the resting state, movement of the left hand, that of the right hand, and movement of both hands. The dependences between the spectral power and coherence of the respective EEG samples on the type of the test performed, on the type of the movement (uni- or bimanual), and on the laterality of the latter in the case of the unimanual movement were examined. The results obtained allow us to propose the following conclusions: (i) α and β EEG rhythms are characterized by different functional importance with respect to manual motor activity; (ii) neural control of bimanual movements cannot be considered “a sum of the controls” of unimanual movements, and (iii) control of bimanual movements may be largely based on the control of the movement by a subdominant upper limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Dounskaia, K. G. Nogueira, S. P. Swinnen, and E. Drummond, “Limitations on coupling of bimanual movements caused by arm dominance: When the muscle homology principle fails,” J. Neurophysiol., 103, No. 4, 2027-2038 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  2. T. I. Abramovich, A. V. Gorkovenko, I. V. Vereshchaka, et al., “Peculiarities of activation of human muscles in realization of cyclic bimanual movements with different organization of the cycles,” Neurophysiology, 48, No. 1, 31-42 (2016).

    Article  Google Scholar 

  3. J. Long, T. Tazoe, D. S. Soteropoulos, and M. A. Perez, “Interhemispheric connectivity during bimanual isometric force generation,” J. Neurophysiol., 115, 1196- 1207 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  4. D. J. Serrien and M. M. Sovijärvi-Spapé, “Hemispheric asymmetries and the control of motor sequences,” Behav. Brain Res., 283, 30-36 (2015).

    Article  PubMed  Google Scholar 

  5. B. A. Kay, J. A. Kelso, E. L. Saltzman, and G. Schoener, “Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model,” J. Exp. Psychol. Human Percept. Perform., 13, No. 2, 178-192 (1987).

    Article  CAS  Google Scholar 

  6. S. C. de Oliveira, “The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models,” Acta Psychol., 110, Nos. 2/3, 139-159 (2002).

    Article  Google Scholar 

  7. J. D. Wong, E. T. Wilson, D. A. Kistemaker, and P. L. Gribble, “Bimanual proprioception: are two hands better than one?” J. Neurophysiol., 111, No. 6, 1362-1368 (2014).

    Article  PubMed  Google Scholar 

  8. Y. Li, O. Levin, A. Forner-Cordero, R. Ronsse, and S. P. Swinnen, “Coordination of complex bimanual multijoint movements under increasing cycling frequencies: the prevalence of mirror-image and translational symmetry,” Acta Psychol., 130, No. 3, 183-195 (2009).

    Article  Google Scholar 

  9. V. Garkavenko, O. Man’kovskaya, T. Omel’chenko, et al., “Effect of cold stimulation of the arm fingers on the spectral/coherent EEG characteristics in humans,” Neurophysiology, 40, No. 3, 228-230 (2008).

    Article  Google Scholar 

  10. V. Garkavenko, E. Man’kovskaya, T. Omel’chenko, et al., “Modifications of EEG in humans performing cyclic movements by the fingers of the right arm: Effect of local contralateral cooling,” Neurophysiology, 40, Nos. 5/6, 369-376 (2008).

    Article  Google Scholar 

  11. C. Gerloff, J. Richard, J. Hadley, et al., “Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements,” Brain, 121, No. 8, 1513-1531 (1998).

    Article  PubMed  Google Scholar 

  12. S. Schaal, D. Sternad, R. Osu, and M. Kawato, “Rhythmic arm movement is not discrete,” Nat. Neurosci., 7, No. 10, 1136-1143 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. E. G. James, “Nonstationarity of stable states in rhythmic bimanual coordination,” Motor Control, 18, No. 2, 184-198 (2014).

    Article  PubMed  Google Scholar 

  14. R. R. Walsh, S. L. Small, E. E. Chen, and A. Solodkin, “Network activation during bimanual movements in humans,” NeuroImage, 43, No. 3, 540-553 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Toyokura, I. Muro, T. Komiya, and M. Obara, “Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging,” Brain Res. Bull., 48, No. 2, 211-217 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. F. G. Andres, T. Mima, A. E. Schulman, et al., “Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition,” Brain, 122, No. 5, 855-870 (1999).

    Article  PubMed  Google Scholar 

  17. M. A. Perez, D. S. Soteropoulos, and S. N. Baker, “Corticomuscular coherence during bilateral isometric arm voluntary activity in healthy humans,” J. Neurophysiol., 107, No. 8, 2154-2162 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  18. T. W. Boonstra, “The potential of corticomuscular and intermuscular coherence for research on human motor control,” Front. Human Neurosci., 7, 855 (2013).

    Article  Google Scholar 

  19. B. A. Conway, D. M. Halliday, S. F. Farmer, et al., “Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man,” J. Physiol., 489, No. 3, 917-924 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. A. M. Amjad, D. M. Halliday, J. R. Rosenberg, and B. A. Conway, “An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor,” J. Neurosci. Methods, 73, No. 1, 69-79 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. A. de Rugy and D. Sternad, “Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements,” Brain Res., 994, No. 2, 160-174 (2003).

    Article  PubMed  Google Scholar 

  22. K. von Carlowitz-Ghori, Z. Bayraktaroglu, F. U. Hohlefeld, et al., “Corticomuscular coherence in acute and chronic stroke,” Clin. Neurophysiol., 125, No. 6, 1182-1191 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Gorkovenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiak, T., Gorkovenko, A.V., Mishchenko, V.S. et al. Features of EEG Activity Related to Realization of Cyclic Unimanual and Bimanual Hand Movements in Humans. Neurophysiology 49, 78–89 (2017). https://doi.org/10.1007/s11062-017-9632-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9632-z

Keywords

Navigation