Skip to main content
Log in

Convergence of Ionotropic and Metabotropic Signal Pathways upon Activation of P2X Receptors in Vascular Smooth Muscle Cells

  • Published:
Neurophysiology Aims and scope

Ionotropic P2X receptors (P2XRs) are involved in sympathetic control of the vascular tone; they mediate entry of Ca2+ in smooth muscle cells (SMCs), which results in depolarization of the latter and activation of voltage-gated L-type calcium channels. In addition, Ca2+ ions, after their entry into the cell, trigger Ca2+ release from the sarcoplasmic reticulum (SR) of SMCs via ryanodine receptors (RyRs), and this amplifies calcium signals. We found earlier that Ca2+ release mediated by inositol triphosphate (IP3) receptors (IP3Rs) also provides a considerable contribution to P2XR-mediated calcium signaling. Thus, a metabotropic signal pathway is a component of the calcium signaling system triggered by ionotropic P2XRs. Using confocal detection of changes in the intracellular Ca2+ concentration ([Ca2+] i ) and applications of the inhibitors of calcium channels (nicardipine, 5 μM), sarco-endoplasmic Ca2+ ATPase SERCA (CPA, 10 μM), IP3Rs (2-APB, 30 μM), RyRs (tetracaine, 100 μM), and phosphalipase C (PLC; U-73122, 2.5 μM), we estimated relative contributions of the above-mentioned four components to increase in the [Ca2+] i induced by the action of an agonist of P2XRs, α,β-meATP. The contributions of transmembrane Ca2+ entry via channels of P2XRs and calcium channels were comparable (11.0 ± 1.4 %, n = 14 and 8.0 ± 1.4 %, n = 14, respectively). The contribution of Ca2+ release via IP3Rs was found to be three times greater than that via RyRs (41 ± 5 %, n = 26 and 14 ± 7 %, n = 16, respectively). Blocking of calcium channels resulted in a sevenfold decrease in the contribution of IP3R-mediated Ca2+ release (from 41.0 to 5.6%); in this case, the contribution of RyR-mediated Ca2+ release underwent no significant changes. This fact allows us to suppose that there is a functional relation between activation of calcium channels and functioning of a metabotropic PLC/IP3-mediated signal cascade. The efficiency of inhibition of α,β-meATP-induced calcium responses by the blocker of PLC, on the one hand, and by the IP3R blocker and nicardipine, on the other hand, is comparable, and this fact agrees with the above hypothesis. According to our data, P2XR activation-induced increase in [Ca2+] I results not only from P2XR-mediated Ca2+ entry that triggers Ca2+ release via RyRs but also from Ca2+ release via IP3Rs. The latter process is realized due to the functioning of the PLC-mediated pathway, is in close relation with activation of calcium channels, and provides a dominant contribution in Ca2+ release from the stores after activation of the above ionotropic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Kreulen, “Properties of the venous and arterial innervations in the mesentery,” J. Smooth Muscle Res., 39, 269-279 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. G. Burnstock and V. Ralevic, “New insights into the local regulation of blood flow by perivascular nerves and endothelium,” Br. J. Plast. Surg., 47, 527-543 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. W. Zang, J. Zacharia, C. G. Lamont, et al., “Sympathetically evoked Ca2+ signaling in arterial smooth muscle,” Acta Pharmacol. Sin., 27, 1515-1525 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. T. M. Egan, D. S. Samways, and Z. Li, “Biophysics of P2X receptors,” Pflügers Arch., 452, 501-512 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. B. S. Khakh, G. Burnstock, C. Kennedy, et al., “International Union of Pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits,” Pharmacol. Rev., 53, 107-118 (2001).

    CAS  PubMed  Google Scholar 

  6. R. A. North, “Molecular physiology of P2X receptors,” Physiol. Rev., 82, No. 4, 1013-1067 (2002).

    CAS  PubMed  Google Scholar 

  7. D. V. Gordienko, A. V. Zholos, and T. B. Bolton, “Membrane ion channels as physiological targets for local Ca2+ signaling,” J. Microsc., 196, No. 3, 305-316 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Z. Peng, A. Dang, and W. J. Arendshorst, “Increased expression and activity of phospholipase C in renal arterioles of young spontaneously hypertensive rats,” Am. J. Hypertens., 20, 38-43 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. M. Iino, “Calcium-induced calcium release mechanism in guinea pig taenia caeci,” J. Gen. Physiol., 94, No. 2, 363-383 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Kh. Yu. Sukhanova, V. A. Buryj, V. F. Sagach, et al., “Effect of modulators of calcium metabolism on contraction of the guinea pig mesenterial artery upon activation of P2X receptors,” Fiziol. Zh., 55, No. 4, 74-82 (2009).

    CAS  Google Scholar 

  11. K. Starke, I. von Kügelgen, B. Driessen, et al., “ATP release and its prejunctional modulation,” Ciba Found. Symp., 198, 239-249 (1996).

    CAS  PubMed  Google Scholar 

  12. D. Purves, G. J. Augustine, D. Fitzpatrick, et al., Neuroscience, Sinauer Associates. Inc., Sunderland, Massachusetts (2004).

    Google Scholar 

  13. R. J. Evans and A. Surprenant, “Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP,” Br. J. Pharmacol., 106, No. 2, 242-249 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. G. Burnstock, “Physiology and pathophysiology of purinergic neurotransmission,” Physiol. Rev., 87, No. 2, 659-797 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. O. V. Povstyan, M. I. Harhun, and D. V. Gordienko, “Ca2+ entry following P2X receptor activation induces IP3 receptor mediated Ca2+ release in renal resistance artery myocytes,” Br. J. Pharmacol., 162, 1618-1638 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. C. J. Lewis and R. J. Evans, “Comparison of P2X receptors in rat mesenteric, basilar and septal (coronary) arteries,” J. Auton. Nerv. Syst., 81, Nos. 1/3, 69-74 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. M. Suzuki, K. Muraki, Y. Imaizumi, et al., “Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum Ca2+-pump, reduces Ca2+-dependent K+ currents in guinea-pig smooth muscle cells,” Br. J. Pharmacol., 107, 134-140 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. V. Garaliene, V. Barsys, P. Jakuška, et al., “Action of calcium antagonists and agonists on isolated human thoracic arteries used for coronary artery bypass grafting,” Pharmacol. Res., 64, 733-738 (2012).

    CAS  Google Scholar 

  19. A. Del Valle-Rodrıguez, J. Lopez-Barneo, and J. Urena, “Ca2+ channel–sarcoplasmic reticulum coupling: a mechanism of arterial myocyte contraction without Ca2+ influx,” EMBO J., 22, 4337-4345 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  20. T. Maruyama, T. Kanaji, S. Nakade, et al., “2-APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release,” J. Biochem., 122, 498-505 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. J. Urena, A. Del Valle-Rodrıguez, and J. Lopez-Barneo, “Metabotropic Ca2+ channel-induced calcium release in vascular smooth muscle,” Cell Calcium, 42, 513-520 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. R. J. Smith, L. M. Sam, J. M. Justen, et al., “Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness,” J. Pharmacol. Exp. Ther., 253, 688-697 (1990).

    CAS  PubMed  Google Scholar 

  23. D. Poburko, N. Fameli, K. H. Kuo, et al., “Ca2+ signaling in smooth muscle: TRPC6, NCX and LNats in nanodomains,” Channels, 2, No. 1, 10-12 (2008).

    Article  PubMed  Google Scholar 

  24. L. A. Blatter and W. G Weir, “Agonist-induced [Ca2+ ] i waves and Ca2+ -induced Ca2+ release in mammalian vascular smooth muscle cells,” Am. J. Physiol., 263, 576-586 (1992).

    Google Scholar 

  25. F. X. Boittin, N. Macrez, G. Halet, et al., “Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes,” Am. J. Physiol., 277, 139-151 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yu. Sukhanova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhanova, K.Y., Bouryi, V.A. & Gordienko, D.V. Convergence of Ionotropic and Metabotropic Signal Pathways upon Activation of P2X Receptors in Vascular Smooth Muscle Cells. Neurophysiology 46, 398–404 (2014). https://doi.org/10.1007/s11062-015-9464-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9464-7

Keywords

Navigation