Skip to main content

Advertisement

Log in

Biophysical Mechanism of Parasympathetic Excitation of Urinary Bladder Smooth Muscle Cells: a Simulation Study

  • Published:
Neurophysiology Aims and scope

Using the Hodgkin-Huxley formalism, we developed a computer model of a smooth muscle cell (SMC) of the urinary bladder detrusor; the model included the main types of ion channels and pumps, as well as intracellular calcium regulatory mechanisms inherent in the prototype cell. The biophysical mechanisms of generation of action potentials (APs) necessary for initiation of muscle contraction and those of calcium transients in response to parasympathetic activation of metabotropic М2/М3-cholinoreceptors and co-activation of Р2Х-purinoreceptors were investigated. The simulated SMC in response to a depolarizing current pulse generated an AP that was, by a number of indices, similar to real APs and was also accompanied by a transient elevation of the intracellular calcium concentration. We demonstrated a possibility of generation of such APs in response to a transient increase in the conductivity of channels of calcium-dependent chloride current accompanied by increase in the conductivity of channels associated with Р2Х-receptors (the conductivity ratio was 95 to 5 % and similar to that in the prototype). For the AP generation, temporal relations of the processes of increases in the mentioned conductances simulating the final effect of activation of М2/М3- and Р2Х-receptors were significant. These results obtained on the rather simplified model allow researchers to use the latter as an appropriate starting point for the development of more detailed models (in particular, those representing cascades of metabolic reactions triggered by a parasympathetic action).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ruffion, D. Castro-Diaz, H. Patel, et al., “Systematic review of the epidemiology of urinary incontinence and detrusor overactivity among patients with neurogenic overactive bladder,” Neuroepidemiology, 41, Nos. 3/4, 146–155 (2013).

    Article  PubMed  Google Scholar 

  2. N. I. Osman, C. R. Chapple, P. Abrams, et al., “Detrusor underactivity and the underactive bladder: a new clinical entity? A review of current terminology, definitions, epidemiology, aetiology, and diagnosis,” Eur. Urol., 65, No. 2, 389–398 (2014).

    Article  PubMed  Google Scholar 

  3. E. Cortes and C. Kelleher, “The cost of not treating overactive bladder,” Eur. Urol. Rev., 2, No. 1, 70–72 (2007).

    Google Scholar 

  4. D. J. Sellers and R. Chess-Williams, “Muscarinic agonists and antagonists: effects on the urinary bladder,” in: Muscarinic Receptors. Handbook of Experimental Pharmacology, Vol. 208, A. D. Fryer, A. Christopoulos, and N. M. Nathanson (eds.), Springer, Heidelberg, Dordreht, London, et al. (2012), pp. 375–400.

  5. S. N. Zorkin, T. N. Gusarova, and S. A. Borisova, “Neurogenic bladder in children. Possibilities of pharmacotherapy,” Lechashchii vrach, 1, 37–39 (2009).

    Google Scholar 

  6. K. E. Andersson, “New roles for muscarinic receptors in the pathophysiology of lower urinary tract symptoms,” BJU Int., 86, No. 2, 36–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. S. S. Hegde, “Muscarinic receptors in the bladder: from basic research to therapeutics,” Br. J. Pharmacol., 147, No. 2, 80–87 (2006).

    Article  Google Scholar 

  8. K. E. Andersson and A. Arner, “Urinary bladder contraction and relaxation: physiology and pathophysiology,” Physiol. Rev., 84, No. 3, 935–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. C. J. Fowler, D. Griffiths, and W. C. de Groat, “The neural control of micturition,” Nat. Rev. Neurosci., 9, No. 6, 453–466 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. A. F. Brading and K. L. Brain, “Ion channel modulators and urinary tract function,” in: Urinary Tract. Handbook of Experimental Pharmacology, Vol. 202, K.-E. Andersson and M. C. Michel (eds.), Springer, Heidelberg, DorLondon, et al. (201 1), pp. 376–389.

  11. G. Burnstock, “Expanding field of purinergic signaling,” Drug Dev. Res., 52, No. 1, 1–10 (2001).

    Article  CAS  Google Scholar 

  12. G. Burnstock, “Purinergic signalling in the gastrointestinal tract and related organs in health and disease,” Purinerg. Signal., 10, No. 1, 3–50 (2014).

    Article  CAS  Google Scholar 

  13. E. P. Frazier, S. L. Peters, A. S. Braverman, et al., “Signal transduction underlying the control of urinary bladder smooth muscle tone by muscarinic receptors and beta-adrenoceptors,” Naunyn-Schmiedeberg’s Arch. Pharmacol., 377, Nos. 4/6, 449–462 (2008).

    Article  CAS  Google Scholar 

  14. I. A. Makedonsky, “Immunohystochemical investigation of the M2 and M3 muscarinic receptors in patients with bladder exstrophy,” Eur. Urol., 4, No. 2, 182 (2004).

  15. I. A. Makedonsky, “Morphological and functional peculiarities of the bladder in children with anorectal anomalies”, Khirurg. Dytyach. Viku, 4, No. 4, 46–52 (2007).

    Google Scholar 

  16. I. A. Makedonsky, “Prophylactics of damages to the urogenital system in the course of surgical correction of anorectal deficiencies in children”, Urologiya, 15, No. 2 (578–31 (2011).

    Google Scholar 

  17. Pat.No. 63684 Ukraine, MPK (2011.01) A61B 17/00, Method of treatment of anorectal developmental deficiencies, I. O. Makedonsky, publ. Oct. 10, 2011, Byul. No. 19.

  18. I. A. Makedonsky and Ye. P. Poddubnaya, “Clinical possibilities of biofeedback systems in treatment of children suffering from enuresis because of bladder extrра,”Меd. Perspekt., 16, No. 2, 59–65 (2011).

    Google Scholar 

  19. S. M. Korogod and A. V. Kochenov, “Mathematical model of calcium-dependent chloride current in a smooth muscle cell,” Neurophysilogy, 45, Nos. 5/6, 369–378 (2013).

    Article  CAS  Google Scholar 

  20. M. L. Hines and N. T. Carnevale, “The NEURON simulation environment,” Neural. Comput., 9, No. 6, 1179–1209 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. Physiology of Humans,, V. M. Pokrovskii and G. F. Korot’ko, Meditsina, Moscow (2003).

  22. Physiology of Humans, R. F. Schmidt and G. Thews, eds. [in Russian], Mir , Moscow (2005).

  23. F. Martini, J. Lindsley Nath, and E. F. Bartholomew, Fundamentals of Anatomy and Phsiology, Publ. Pearson Education Inc., San Francisco (201 1).

    Google Scholar 

  24. D. Lipscombe, “L-type calcium channels: highs and new lows,” Circ. Res., 90, No. 9, 933–935 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. M. A. Hollywood, S. Woolsey, I. K. Walsh, et al., “T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra,” J. Physiol., 550, Part 3, 753–764 (2003).

  26. K. L. Hristov, M. Chen, W. F. Kellett, et al., “Largeconductance voltage- and Ca2+−activated K+ channels regulate human detrusor smooth muscle function,” Am. J. Physiol. Cell Physiol., 301, No. 4, 903–912 (2011).

    Article  Google Scholar 

  27. N. T. Carnevale and M. L. Hines, The NEURON Book, Cambridge Univ. Press, Cambridge (2006).

    Book  Google Scholar 

  28. H. Hashitani and A. F. Brading, “Ionic basis for the regulation of spontaneous excitation in detrusor smooth muscle cells of the guinea-pig urinary bladder,” Br. J. Pharmacol., 140, No. 1, 159–169 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. N. J. Bramich and A. F. Brading, “Electrical properties of smooth muscle in the guinea-pig urinary bladder,” J. Physiol., 492, Part 1, 185–198 (1996).

  30. H. Hashitani and A. F. Brading, “Electrical properties of detrusor smooth muscles from the pig and human urinary bladder,” Br. J. Pharmacol., 140, No. 1, 146–158 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. G. P. Sui, C. Wu, and C. H. Fry, “The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells,” J. Urol., 165, No. 2, 627–632 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. C. H. Fry, G. Sui, and C. Wu, “T-type Ca2+ channels in non-vascular smooth muscles,” Cell Calcium, 40, No. 2, 231–239 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Korogod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korogod, S.M., Kochenov, A.V. & Makedonsky, I.A. Biophysical Mechanism of Parasympathetic Excitation of Urinary Bladder Smooth Muscle Cells: a Simulation Study. Neurophysiology 46, 293–299 (2014). https://doi.org/10.1007/s11062-014-9447-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-014-9447-0

Keywords

Navigation