Skip to main content
Log in

Applicability of Peak-Scaled Nonstationary Fluctuation Analysis to the Study of Inhibitory Synaptic Transmission in Hippocampal Cultures

  • Proceedings of the IBRO Advanced School of Neuroscience “Receptors, Channels, Messengers” (Yalta, Crimean Autonomic Republic, Ukraine, September 16–28, 2004)
  • Published:
Neurophysiology Aims and scope

Abstract

At present, there are no direct methods to determine the number of synaptic receptor-related channels activated in the course of synaptic transmission (N) or a value of the single-channel conductance (γ). Peak-scaled nonstationary fluctuation analysis (PS NSFA) should be considered the most well-developed indirect approach used for estimating these parameters. Despite the relatively wide using of this approach for the analysis of various synaptic currents, some aspects of possible errors that can occur in the course of data acquisition or their subsequent processing have not been studied. We examined in detail the problem of applicability of PS NSFA in the study of spontaneous and evoked GABA-ergic inhibitory postsynaptic currents (IPSCs). IPSCs were recorded using a dual patch-clamp technique from hippocampal neurons growing in low-density cultures. Parameters of the recorded IPSCs and values for different components of GABA-ergic synaptic transmission reported earlier were used for simulations and PS-NSFA analysis. In Monte Carlo computer simulations of evoked IPSCs, the influence of series resistance, background noise, asynchronicity of transmitter release, GABAA channel properties, dendritic attenuation, and instrumental filtering on γ estimates obtained by PS NSFA was examined. We concluded that the γ and, consequently, N values may be satisfactorily estimated by the suggested approach using spontaneous and evoked IPSCs recorded in inhibitory synaptic connections in hippocampal cultures within a wide range of experimental conditions. We also estimated the mean of the single-channel conductance of synaptic GABAA receptors in neurons from primary hippocampal cultures and found that this value (29 ± 5 pS) agrees well with the high conductance of single synaptic GABAA receptors observed in acute hippocampal slices. This indicates that dissociated cultures are an adequate model for studying the properties of synaptic GABAA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Katz and R. Miledi, “A study of synaptic transmission in the absence of nerve impulses,” J. Physiol., 192, 407–436 (1967).

    CAS  PubMed  Google Scholar 

  2. P. Thakur, D. R. Stevens, Z. H. Sheng, and J. Rettig, “Effects of PKA-mediated phosphorylation of Snapin on synaptic transmission in cultured hippocampal neurons,” J. Neurosci., 24, 6476–6481 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. S. F. Traynelis and F. Jaramillo, “Getting the most out of noise in the central nervous system,” Trends Neurosci., 21, 137–145 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, “The glutamate receptor ion channels,” Pharmacol. Rev., 51, 7–61 (1999).

    CAS  PubMed  Google Scholar 

  5. A. Thalhammer, T. Morth, N. Strutz, and M. Hollmann, “A desensitization-inhibiting mutation in the glutamate binding site of rat alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits is dominant in heteromultimeric complexes,” Neurosci. Lett., 277, 161–164 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. A. Semyanov, M. C. Walker, D. M. Kullmann, and R. A. Silver, “Tonically active GABAA receptors: modulating gain and maintaining the tone,” Trends Neurosci., 27, 262–269 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. I. Mody and R. A. Pearce, “Diversity of inhibitory neurotransmission through GABA(A) receptors,” Trends Neurosci., 27, 569–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. J. Y. Yeung, K. J. Canning, G. Zhu, et al., “Tonically activated GABAA receptors in hippocampal neurons are high-affinity, low-conductance sensors for extracellular GABA,” Mol. Pharmacol., 63, 2–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. P. S. Mangan, C. Sun, M. Carpenter, et al., “Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors,” Mol. Pharmacol., 67, 775–788, (2005).

    CAS  PubMed  Google Scholar 

  10. E. Neher and C. F. Stevens, “Conductance fluctuations and ionic pores in membranes,” Annu. Rev. Biophys. Bioeng., 6, 345–381 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. S. F. Traynelis, R. A. Silver, and S. G. Cull-Candy, “Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fibre-granule cell synapse,” Neuron, 11, 279–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. R. A. Silver, S. G. Cull-Candy, and T. Takahashi, “Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites,” J. Physiol., 494, Part 1, 231–250 (1996).

    CAS  PubMed  Google Scholar 

  13. A. Momiyama, R. A. Silver, M. Hausser, et al., “The density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell synapse in immature rats,” J. Physiol., 549, 75–92 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Z. Nusser, D. Naylor, and I. Mody, “Synapse-specific contribution of the variation of transmitter concentration to the decay of inhibitory postsynaptic currents,” Biophys. J., 80, 1251–1261 (2001).

    CAS  PubMed  Google Scholar 

  15. I. Mody, Y. De Koninck, T. S. Otis, and I. Soltesz, “Bridging the cleft at GABA synapses in the brain,” Trends Neurosci., 17, 517–525 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. M. V. Jones and G. L. Westbrook, “Desensitized states prolong GABAA channel responses to brief agonist pulses,” Neuron, 15, 181–191 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. M. W. Hill, P. A. Reddy, D. F. Covey, and S. M. Rothman, “Contribution of subsaturating GABA concentrations to IPSCs in cultured hippocampal neurons,” J. Neurosci., 18, 5103–5111 (1998).

    CAS  PubMed  Google Scholar 

  18. M. V. Storozhuk, S. Y. Ivanova, T. A. Pivneva, et al., “Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures,” Neurosci. Lett., 323, 5–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Y. De Koninck and I. Mody, “Noise analysis of miniature IPSCs in adult rat brain slices: properties and modulation of synaptic GABAA receptor channels,” J. Neurophysiol., 71, 1318–1335 (1994).

    PubMed  Google Scholar 

  20. D. Johnston and S. M. Wu, Foundations of Cellular Neurophysiology, A Bratsord Book, London (1995).

    Google Scholar 

  21. N. Spruston and D. Johnston, “Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons,” J. Neurophysiol., 67, 508–529 (1992).

    CAS  PubMed  Google Scholar 

  22. J. D. Clements, “Transmitter time-course in the synaptic cleft: its role in central synaptic function,” Trends Neurosci., 19, 163–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. M. Hausser and A. Roth, “Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method,” J. Neurosci., 17, 7606–7625 (1997).

    CAS  PubMed  Google Scholar 

  24. D. Debanne, “Information processing in the axon,” Nat. Rev. Neurosci., 5, 304–316 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. C. F. Stevens, “Neurotransmitter release at central synapses,” Neuron, 40, 381–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Z. Nusser, S. Cull-Candy, and M. Farrant, “Differences in synaptic GABA(A) receptor number underlie variation in GABA mini amplitude,” Neuron, 19, 697–709 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. S. G. Brickley, S. G. Cull-Candy, and M. Farrant, “Single-channel properties of synaptic and extrasynaptic GABAA receptors suggest differential targeting of receptor subtypes,” J. Neurosci., 19, 2960–2973 (1999).

    CAS  PubMed  Google Scholar 

  28. D. Perrais and N. Ropert, “Effect of zolpidem on miniature IPSCs and occupancy of postsynaptic GABAA receptors in central synapses,” J. Neurosci., 19, 578–588 (1999).

    CAS  PubMed  Google Scholar 

  29. P. S. Mangan, C. Sun, M. Carpenter, et al., “Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors,” Mol. Pharmacol., 67, 775–788 (2005).

    CAS  PubMed  Google Scholar 

  30. L. Forti, M. Bossi, A. Bergamaschi, et al., “Loose-patch recordings of single quanta at individual hippocampal synapses,” Nature, 388, 874–878 (1997).

    CAS  PubMed  Google Scholar 

  31. T. A. Benke, A. Luthi, M. J. Palmer, et al., “Mathematical modelling of non-stationary fluctuation analysis for studying channel properties of synaptic AMPA receptors,” J. Physiol., 537, 407–420 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Markova.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 379–388, July–August, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markova, O., Stepanyuk, A., Tsugorka, T. et al. Applicability of Peak-Scaled Nonstationary Fluctuation Analysis to the Study of Inhibitory Synaptic Transmission in Hippocampal Cultures. Neurophysiology 37, 333–343 (2005). https://doi.org/10.1007/s11062-006-0008-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-006-0008-z

Keywords

Navigation