Skip to main content

Advertisement

Log in

Improvement in visual outcomes of patients with base of skull meningioma as a result of evolution in the treatment techniques in the last three decades: a systematic review

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

We systematically reviewed visual outcomes over the last three decades in patients undergoing treatment for base of skull (BOS) meningiomas and provide recommendations to preserve vision.

Methods

In accordance with the PRISMA guidelines for systematic reviews, a search was conducted from 6/1/2022–9/1/2022 using PubMed and Web of Science. Inclusion criteria included (1) patients treated for BOS meningiomas (2) treatment modality specified (3) specifics of surgical techniques and/or dose/fractions of radiotherapy (4) individual patient outcomes of treatment. Each study was assessed for bias based on study design and heterogeneity of results.

Results

A total of 50 studies were included (N = 2911). When comparing improved vision versus unchanged or worsened vision, studies investigating surgery alone published from 2006 and onward had significantly better visual outcomes compared to pre-2006 studies (p = 0.02). When comparing improved vision versus unchanged or worsened vision, studies investigating combined therapy with surgery and radiation published from 2008 and onward had significantly better visual outcomes compared to pre-2008 studies (p < 0.01). Combined modality therapy was less likely to worsen vision compared to either surgery or radiation monotherapy (p < 0.01). However, surgery and radiation monotherapy were more likely to actually improve outcomes compared to combination therapy (p < 0.01).

Conclusion

For over a decade we have observed improvement in visual outcomes in patients managed for meningioma of BOS, likely attributing the innovation in microsurgical and more targeted and conformal radiation techniques. Combination therapy may be the safest option for preventing worsening of vision, but the highest rates of improving visual function are achieved through monotherapy when indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Due to the nature of systematic reviews, all data included in this manuscript is available online in previously published works, as cited in this manuscript.

Abbreviations

BOS:

Base of skull

PRISMA:

Preferred reporting items for systematic reviews and meta-analyses

References

  1. Raheja A, Couldwell WT (2016) Microsurgical resection of skull base meningioma-expanding the operative corridor. J Neurooncol 130(2):263–267

    PubMed  Google Scholar 

  2. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neurooncol 99(3):307–314

    PubMed  PubMed Central  Google Scholar 

  3. Ogasawara C, Philbrick BD, Adamson DC (2021) Meningioma: a review of epidemiology, pathology, diagnosis, treatment, and future directions. Biomedicines 9(3)

  4. Ostrom QT et al (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 22(12 Suppl 2):iv1–iv96

    PubMed  PubMed Central  Google Scholar 

  5. Marosi C et al (2008) Meningioma. Crit Rev Oncol Hematol 67(2):153–171

    PubMed  Google Scholar 

  6. Goldbrunner R et al (2021) EANO guideline on the diagnosis and management of meningiomas. Neuro Oncol 23(11):1821–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cappabianca P et al (2020) Meningiomas: criteria for modern surgical indications. Mini-invasive Surg 4:83

    Google Scholar 

  8. Maggio I et al (2021) Meningioma: not always a benign tumor. A review of advances in the treatment of meningiomas. CNS Oncol 10(2):Cns72

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Khalessi AA et al (2019) First-in-man clinical experience using a high-definition 3-dimensional exoscope system for microneurosurgery. Oper Neurosurg (Hagerstown) 16(6):717–725

    PubMed  Google Scholar 

  10. Lemée JM et al (2019) Extent of resection in meningioma: predictive factors and clinical implications. Sci Rep 9(1):5944

    PubMed  PubMed Central  Google Scholar 

  11. Voß KM et al (2017) The Simpson grading in meningioma surgery: does the tumor location influence the prognostic value? J Neurooncol 133(3):641–651

    PubMed  Google Scholar 

  12. Chen R, Aghi MK (2020) Atypical meningiomas. Handb Clin Neurol 170:233–244

    PubMed  Google Scholar 

  13. Woo SY et al (1996) A comparison of intensity modulated conformal therapy with a conventional external beam stereotactic radiosurgery system for the treatment of single and multiple intracranial lesions. Int J Radiat Oncol Biol Phys 35(3):593–597

    CAS  PubMed  Google Scholar 

  14. Bolsi A, Fogliata A, Cozzi L (2003) Radiotherapy of small intracranial tumours with different advanced techniques using photon and proton beams: a treatment planning study. Radiother Oncol 68(1):1–14

    PubMed  Google Scholar 

  15. Meeks SL et al (1998) Potential clinical efficacy of intensity-modulated conformal therapy. Int J Radiat Oncol Biol Phys 40(2):483–495

    CAS  PubMed  Google Scholar 

  16. Rogers CL et al (2020) High-risk meningioma: initial outcomes from NRG oncology/RTOG 0539. Int J Radiat Oncol Biol Phys 106(4):790–799

    PubMed  Google Scholar 

  17. Debus J et al (2001) High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol 19(15):3547–3553

    CAS  PubMed  Google Scholar 

  18. Rogers L (2010) Phase II Trial of Observation for Low-Risk Meningiomas and of Radiotherapy for Intermediate and High-Risk Meningiomas, in NCT00895622, N.I.o. Health, Editor. 2010, National Institute of Health: ClinicalTrials.gov

  19. Dziuk TW et al (1998) Malignant meningioma: an indication for initial aggressive surgery and adjuvant radiotherapy. J Neurooncol 37(2):177–188

    CAS  PubMed  Google Scholar 

  20. Rogers L et al (2015) Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 122(1):4–23

    PubMed  PubMed Central  Google Scholar 

  21. Raco A et al (1999) Meningiomas of the tuberculum sellae. Our experience in 69 cases surgically treated between 1973 and 1993. J Neurosurg Sci 43(4):253–260 (discussion 260–2)

    CAS  PubMed  Google Scholar 

  22. Schroeder HW, Hickmann AK, Baldauf J (2011) Endoscope-assisted microsurgical resection of skull base meningiomas. Neurosurg Rev 34(4):441–455

    PubMed  Google Scholar 

  23. Tomasello F et al (2011) Giant olfactory groove meningiomas: extent of frontal lobes damage and long-term outcome after the pterional approach. World Neurosurg 76(3–4):311–317 (discussion 255–8)

    PubMed  Google Scholar 

  24. Wang Q et al (2010) Visual outcome after extended endoscopic endonasal transsphenoidal surgery for tuberculum sellae meningiomas. World Neurosurg 73(6):694–700

    PubMed  Google Scholar 

  25. Mahmoud M, Nader R, Al-Mefty O (2010) Optic canal involvement in tuberculum sellae meningiomas: influence on approach recurrence, and visual recovery. Neurosurgery 67(3):108–118 (discussion ons118–9)

    Google Scholar 

  26. Landeiro JA et al (2010) Tuberculum sellae meningiomas: surgical considerations. Arq Neuropsiquiatr 68(3):424–429

    PubMed  Google Scholar 

  27. Romani R et al (2009) Lateral supraorbital approach applied to olfactory groove meningiomas: experience with 66 consecutive patients. Neurosurgery 65(1):39–53

    PubMed  Google Scholar 

  28. Gazzeri R, Galarza M, Gazzeri G (2008) Giant olfactory groove meningioma: ophthalmological and cognitive outcome after bifrontal microsurgical approach. Acta Neurochir (Wien) 150(11):1117–1125 (discussion 1126)

    PubMed  Google Scholar 

  29. Nozaki K et al (2008) Effect of early optic canal unroofing on the outcome of visual functions in surgery for meningiomas of the tuberculum sellae and planum sphenoidale. Neurosurgery 62(4):839–844 (discussion 844–6)

    PubMed  Google Scholar 

  30. Sindou M et al (2007) Long-term follow-up of meningiomas of the cavernous sinus after surgical treatment alone. J Neurosurg JNS 107(5):937–944

    Google Scholar 

  31. Ringel F, Cedzich C, Schramm J (2007) Microsurgical technique and results of a series of 63 spheno-orbital meningiomas. Oper Neurosurg 60(4):214–222

    Google Scholar 

  32. Park CK et al (2006) Surgically treated tuberculum sellae and diaphragm sellae meningiomas: the importance of short-term visual outcome. Neurosurgery 59(2):238–243 (discussion 238–43)

    PubMed  Google Scholar 

  33. Schick U, Hassler W (2005) Surgical management of tuberculum sellae meningiomas: involvement of the optic canal and visual outcome. J Neurol Neurosurg Psychiatry 76(7):977–983

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zevgaridis D et al (2001) Meningiomas of the sellar region presenting with visual impairment: impact of various prognostic factors on surgical outcome in 62 patients. Acta Neurochir (Wien) 143(5):471–476

    CAS  PubMed  Google Scholar 

  35. Alam S et al (2018) Surgical management of clinoidal meningiomas: 10 cases analysis. Neuroimmunol Neuroinflamm 5:21

    Google Scholar 

  36. Attia M et al (2012) Giant anterior clinoidal meningiomas: surgical technique and outcomes. J Neurosurg 117(4):654–665

    PubMed  Google Scholar 

  37. Barzaghi LR et al (2017) Transfrontal-sinus-subcranial approach to olfactory groove meningiomas: surgical results and clinical and functional outcome in a consecutive series of 21 patients. World Neurosurg 101:315–324

    PubMed  Google Scholar 

  38. Chaichana KL et al (2012) Predictors of visual outcome following surgical resection of medial sphenoid wing meningiomas. J Neurol Surg B Skull Base 73(5):321–326

    PubMed  PubMed Central  Google Scholar 

  39. Chernov SV et al (2017) Early postoperative results of surgical treatment of patients with anterior clinoidal meningiomas. Zh Vopr Neirokhir Im N N Burdenko 81(1):74–80

    CAS  PubMed  Google Scholar 

  40. Czernicki T et al (2015) Results of surgical treatment of anterior clinoidal meningiomas—our experiences. Neurol Neurochir Pol 49(1):29–35

    PubMed  Google Scholar 

  41. Dalle Ore CL et al (2020) Hyperostosing sphenoid wing meningiomas: surgical outcomes and strategy for bone resection and multidisciplinary orbital reconstruction. J Neurosurg 134(3):711–720

    PubMed  Google Scholar 

  42. Freeman JL et al (2017) Spheno-orbital meningiomas: a 16-year surgical experience. World Neurosurg 99:369–380

    PubMed  Google Scholar 

  43. Giammattei L et al (2019) Surgery for clinoidal meningiomas: case series and meta-analysis of outcomes and complications. World Neurosurg 129:e700–e717

    PubMed  Google Scholar 

  44. Koutourousiou M et al (2014) Endoscopic endonasal surgery for olfactory groove meningiomas: outcomes and limitations in 50 patients. Neurosurg Focus 37(4):E8

    PubMed  Google Scholar 

  45. Koutourousiou M et al (2014) Endoscopic endonasal surgery for suprasellar meningiomas: experience with 75 patients. J Neurosurg 120(6):1326–1339

    PubMed  Google Scholar 

  46. Leroy HA et al (2016) Internal and external spheno-orbital meningioma varieties: different outcomes and prognoses. Acta Neurochir (Wien) 158(8):1587–1596

    PubMed  Google Scholar 

  47. Liu DY et al (2012) Large medial sphenoid wing meningiomas: long-term outcome and correlation with tumor size after microsurgical treatment in 127 consecutive cases. Turk Neurosurg 22(5):547–557

    PubMed  Google Scholar 

  48. Mariniello G et al (2013) Surgical unroofing of the optic canal and visual outcome in basal meningiomas. Acta Neurochir (Wien) 155(1):77–84

    PubMed  Google Scholar 

  49. Nagata T et al (2013) Analysis of venous drainage from sylvian veins in clinoidal meningiomas. World Neurosurg 79(1):116–123

    PubMed  Google Scholar 

  50. Nanda A et al (2016) Stratification of predictive factors to assess resectability and surgical outcome in clinoidal meningioma. Clin Neurol Neurosurg 142:31–37

    PubMed  Google Scholar 

  51. Samadian M et al (2020) Surgical outcomes of sphenoorbital En plaque meningioma: a 10-year experience in 57 consecutive cases. World Neurosurg 144:e576–e581

    PubMed  Google Scholar 

  52. Sughrue M et al (2015) Meningiomas of the anterior clinoid process: is it wise to drill out the optic canal? Cureus 7(9):e321

    PubMed  PubMed Central  Google Scholar 

  53. Talacchi A et al (2020) Long-term follow-up after surgical removal of meningioma of the inner third of the sphenoidal wing: outcome determinants and different strategies. Neurosurg Rev 43(1):109–117

    PubMed  Google Scholar 

  54. Verma SK et al (2016) Medial sphenoid wing meningiomas: experience with microsurgical resection over 5 years and a review of literature. Neurol India 64(3):465–475

    PubMed  Google Scholar 

  55. Della Puppa A et al (2015) Open transcranial resection of small (<35 mm) meningiomas of the anterior midline skull base in current microsurgical practice. World Neurosurg 84(3):741–750

    PubMed  Google Scholar 

  56. Liscák R et al (1999) Gamma knife radiosurgery of meningiomas in the cavernous sinus region. Acta Neurochir (Wien) 141(5):473–480

    PubMed  Google Scholar 

  57. Spiegelmann R et al (2010) Cavernous sinus meningiomas: a large LINAC radiosurgery series. J Neurooncol 98(2):195–202

    PubMed  Google Scholar 

  58. Metellus P et al (2010) Fractionated conformal radiotherapy in the management of cavernous sinus meningiomas: long-term functional outcome and tumor control at a single institution. Int J Radiat Oncol Biol Phys 78(3):836–843

    PubMed  Google Scholar 

  59. Colombo F et al (2009) Cyberknife radiosurgery for benign meningiomas: short-term results in 199 patients. Neurosurgery 64(2 Suppl):A7-13

    PubMed  Google Scholar 

  60. Hasegawa T et al (2007) Long-term outcomes of Gamma Knife surgery for cavernous sinus meningioma. J Neurosurg 107(4):745–751

    PubMed  Google Scholar 

  61. Brell M et al (2006) Fractionated stereotactic radiotherapy in the treatment of exclusive cavernous sinus meningioma: functional outcome, local control, and tolerance. Surg Neurol 65(1):28–33 (discussion 33–4)

    PubMed  Google Scholar 

  62. Iwai Y, Yamanaka K, Ishiguro T (2003) Gamma knife radiosurgery for the treatment of cavernous sinus meningiomas. Neurosurgery 52(3):517–524 (discussion 523–4)

    PubMed  Google Scholar 

  63. Haghighi N et al (2015) Hypofractionated stereotactic radiotherapy for benign intracranial tumours of the cavernous sinus. J Clin Neurosci 22(9):1450–1455

    PubMed  Google Scholar 

  64. Navarria P et al (2015) Hypofractionated stereotactic radiation therapy in skull base meningiomas. J Neurooncol 124(2):283–289

    CAS  PubMed  Google Scholar 

  65. Oermann EK et al (2013) Five fraction image-guided radiosurgery for primary and recurrent meningiomas. Front Oncol 3:213

    PubMed  PubMed Central  Google Scholar 

  66. Shen X et al (2012) Fractionated stereotactic radiation therapy improves cranial neuropathies in patients with skull base meningiomas: a retrospective cohort study. Radiat Oncol 7:225

    PubMed  PubMed Central  Google Scholar 

  67. Marchetti M et al (2016) Multisession radiosurgery for sellar and parasellar benign meningiomas: long-term tumor growth control and visual outcome. Neurosurgery 78(5):638–646

    PubMed  Google Scholar 

  68. Conti A et al (2015) CyberKnife multisession stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for perioptic meningiomas: intermediate-term results and radiobiological considerations. Springerplus 4:37

    PubMed  PubMed Central  Google Scholar 

  69. Azar M et al (2016) Gamma knife radiosurgery in sphenopetroclival meningiomas: preliminary experience at the Iran gamma knife center. World Neurosurg 93:39–43

    PubMed  Google Scholar 

  70. Astradsson A et al (2014) Visual outcome after fractionated stereotactic radiation therapy of benign anterior skull base tumors. J Neurooncol 118(1):101–108

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MH, RP, JS, and JS. The first draft of the manuscript was written by MH and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Gabriella Wernicke.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Due to the nature of systematic reviews, all data included in this manuscript is available online in previously published works, as cited in this manuscript.

Ethics approval

Due to the nature of this systematic review, ethics approval was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holdaway, M., Starner, J., Patel, R.R. et al. Improvement in visual outcomes of patients with base of skull meningioma as a result of evolution in the treatment techniques in the last three decades: a systematic review. J Neurooncol 163, 485–503 (2023). https://doi.org/10.1007/s11060-023-04366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04366-8

Keywords

Navigation