Skip to main content

Advertisement

Log in

Radiation necrosis or tumor progression? A review of the radiographic modalities used in the diagnosis of cerebral radiation necrosis

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Cerebral radiation necrosis is a complication of radiation therapy that can be seen months to years following radiation treatment. Differentiating radiation necrosis from tumor progression on standard magnetic resonance imaging (MRI) is often difficult and advanced imaging techniques may be needed to make an accurate diagnosis. The purpose of this article is to review the imaging modalities used in differentiating radiation necrosis from tumor progression following radiation therapy for brain metastases.

Methods

We performed a review of the literature addressing the radiographic modalities used in the diagnosis of radiation necrosis.

Results

Differentiating radiation necrosis from tumor progression remains a diagnostic challenge and advanced imaging modalities are often required to make a definitive diagnosis. If diagnostic uncertainty remains following conventional imaging, a multi-modality diagnostic approach with perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), single photon emission spectroscopy (SPECT), and radiomics may be used to improve diagnosis.

Conclusion

Several imaging modalities exist to aid in the diagnosis of radiation necrosis. Future studies developing advanced imaging techniques are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48

    Article  Google Scholar 

  2. Huang X, Zhang X, Wang X et al (2020) A nomogram to predict symptomatic epilepsy in patients with radiation-induced brain necrosis. Neurology 95(10):e1392–e1403

    Article  CAS  Google Scholar 

  3. Fink J, Born D, Chamberlain MC (2012) Radiation necrosis: relevance with respect to treatment of primary and secondary brain tumors. Curr Neurol Neurosci Rep 12(3):276–285

    Article  Google Scholar 

  4. Ruben JD, Dally M, Bailey M, Smith R, McLean CA, Fedele P (2006) Cerebral radiation necrosis: incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int J Radiat Oncol Biol Phys 65(2):499–508

    Article  Google Scholar 

  5. Marks JE, Baglan RJ, Prassad SC, Blank WF (1981) Cerebral radionecrosis: incidence and risk in relation to dose, time, fractionation and volume. Int J Radiat Oncol Biol Phys 7(2):243–252

    Article  CAS  Google Scholar 

  6. Shaw E, Scott C, Souhami L et al (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol (90–05). Int J Radiat Oncol Biol Phys 34(3):647–654

    Article  CAS  Google Scholar 

  7. Sneed PK, Mendez J, Vemer-van den Hoek JG et al (2015) Adverse radiation effect after stereotactic radiosurgery for brain metastases: incidence, time course, and risk factors. J Neurosurg 123(2):373–386

    Article  Google Scholar 

  8. Kirkpatrick JP, Wang Z, Sampson JH et al (2015) Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys 91(1):100–108

    Article  Google Scholar 

  9. Juloori A, Miller JA, Parsai S et al (2019) Overall survival and response to radiation and targeted therapies among patients with renal cell carcinoma brain metastases. J Neurosurg 18:1–9

    Google Scholar 

  10. Kim PH, Suh CH, Kim HS et al (2021) Immune checkpoint inhibitor therapy may increase the incidence of treatment-related necrosis after stereotactic radiosurgery for brain metastases: a systematic review and meta-analysis. Eur Radiol 31(6):4114–4129

    Article  CAS  Google Scholar 

  11. Martin AM, Cagney DN, Catalano PJ et al (2018) Immunotherapy and symptomatic radiation necrosis in patients with brain metastases treated with stereotactic radiation. JAMA Oncol 4(8):1123–1124

    Article  Google Scholar 

  12. Carr CM, Benson JC, DeLone DR et al (2021) Intracranial long-term complications of radiation therapy: an image-based review. Neuroradiology 63(4):471–482

    Article  Google Scholar 

  13. Shah R, Vattoth S, Jacob R et al (2012) Radiation necrosis in the brain: imaging features and differentiation from tumor recurrence. Radiographics 32(5):1343–1359

    Article  Google Scholar 

  14. Dequesada IM, Quisling RG, Yachnis A, Friedman WA (2008) Can standard magnetic resonance imaging reliably distinguish recurrent tumor from radiation necrosis after radiosurgery for brain metastases? A radiographic-pathological study. Neurosurgery 63(5):898–903

    Article  Google Scholar 

  15. Stockham AL, Tievsky AL, Koyfman SA et al (2012) Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol 109(1):149–158

    Article  Google Scholar 

  16. Kano H, Kondziolka D, Lobato-Polo J, Zorro O, Flickinger JC, Lunsford LD (2010) T1/T2 matching to differentiate tumor growth from radiation effects after stereotactic radiosurgery. Neurosurgery 66(3):486–491

    Article  Google Scholar 

  17. Wagner S, Lanfermann H, Eichner G, Gufler H (2017) Radiation injury versus malignancy after stereotactic radiosurgery for brain metastases: impact of time-dependent changes in lesion morphology on MRI. Neuro Oncol 19(4):586–594

    CAS  Google Scholar 

  18. Cha J, Kim ST, Kim HJ et al (2013) Analysis of the layering pattern of the apparent diffusion coefficient (ADC) for differentiation of radiation necrosis from tumour progression. Eur Radiol 23(3):879–886

    Article  Google Scholar 

  19. Mitsuya K, Nakasu Y, Horiguchi S et al (2010) Perfusion weighted magnetic resonance imaging to distinguish the recurrence of metastatic brain tumors from radiation necrosis after stereotactic radiosurgery. J Neurooncol 99(1):81–88

    Article  Google Scholar 

  20. Hu LS, Baxter LC, Smith KA et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30(3):552–558

    Article  CAS  Google Scholar 

  21. Barajas RF, Chang JS, Sneed PK, Segal MR, McDermott MW, Cha S (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30(2):367–372

    Article  CAS  Google Scholar 

  22. Kim DY, Kim HS, Goh MJ, Choi CG, Kim SJ (2014) Utility of intravoxel incoherent motion MR imaging for distinguishing recurrent metastatic tumor from treatment effect following gamma knife radiosurgery: initial experience. AJNR Am J Neuroradiol 35(11):2082–2090

    Article  CAS  Google Scholar 

  23. Nichelli L, Casagranda S (2021) Current emerging MRI tools for radionecrosis and pseudoprogression diagnosis. Curr Opin Oncol 33(6):597–607

    Article  CAS  Google Scholar 

  24. Chernov M, Hayashi M, Izawa M et al (2005) Differentiation of the radiation-induced necrosis and tumor recurrence after gamma knife radiosurgery for brain metastases: importance of multi-voxel proton MRS. Minim Invasive Neurosurg 48(4):228–234

    Article  CAS  Google Scholar 

  25. Kamada K, Houkin K, Abe H, Sawamura Y, Kashiwaba T (1997) Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol Med Chir (Tokyo) 37(3):250–256

    Article  CAS  Google Scholar 

  26. Travers S, Joshi K, Miller DC et al (2021) Reliability of magnetic resonance spectroscopy and positron emission tomography computed tomography in differentiating metastatic brain tumor recurrence from radiation necrosis. World Neurosurg 151:e1059–e1068

    Article  Google Scholar 

  27. Serizawa T, Saeki N, Higuchi Y et al (2005) Diagnostic value of thallium-201 chloride single-photon emission computerized tomography in differentiating tumor recurrence from radiation injury after gamma knife surgery for metastatic brain tumors. J Neurosurg 102 Suppl:266–271

    Article  Google Scholar 

  28. Lai G, Mahadevan A, Hackney D et al (2015) Diagnostic accuracy of PET, SPECT, and arterial spin-labeling in differentiating tumor recurrence from necrosis in cerebral metastasis after stereotactic radiosurgery. AJNR Am J Neuroradiol 36(12):2250–2255

    Article  CAS  Google Scholar 

  29. Furuse M, Nonoguchi N, Yamada K et al (2019) Radiological diagnosis of brain radiation necrosis after cranial irradiation for brain tumor: a systematic review. Radiat Oncol 14(1):28

    Article  Google Scholar 

  30. Galldiks N, Langen KJ, Albert NL et al (2019) PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol 21(5):585–595

    Article  Google Scholar 

  31. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96(3):191–197

    Article  CAS  Google Scholar 

  32. Kim EE, Chung SK, Haynie TP et al (1992) Differentiation of residual or recurrent tumors from post-treatment changes with F-18 FDG PET. Radiographics 12(2):269–279

    Article  CAS  Google Scholar 

  33. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 19(3):407–413

    CAS  Google Scholar 

  34. Thompson TP, Lunsford LD, Kondziolka D (1999) Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 73(1–4):9–14

    Article  CAS  Google Scholar 

  35. Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH (2011) Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol 103(1):137–146

    Article  Google Scholar 

  36. Hatzoglou V, Yang TJ, Omuro A et al (2016) A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro Oncol 18(6):873–880

    Article  CAS  Google Scholar 

  37. Li H, Deng L, Bai HX et al (2018) Diagnostic accuracy of amino acid and FDG-PET in differentiating brain metastasis recurrence from radionecrosis after radiotherapy: a systematic review and meta-analysis. AJNR Am J Neuroradiol 39(2):280–288

    Article  CAS  Google Scholar 

  38. Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49(5):694–699

    Article  Google Scholar 

  39. Tsuyuguchi N, Sunada I, Iwai Y et al (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98(5):1056–1064

    Article  Google Scholar 

  40. Minamimoto R, Saginoya T, Kondo C et al (2015) Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One 10(7):e0132515

    Article  Google Scholar 

  41. Hotta M, Minamimoto R, Miwa K (2019) 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: radiomics approach with random forest classifier. Sci Rep 9(1):15666

    Article  Google Scholar 

  42. Yomo S, Oguchi K (2017) Prospective study of (11)C-methionine PET for distinguishing between recurrent brain metastases and radiation necrosis: limitations of diagnostic accuracy and long-term results of salvage treatment. BMC Cancer 17(1):713

    Article  Google Scholar 

  43. Nihashi T, Dahabreh IJ, Terasawa T (2013) Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 34(5):944–950

    Article  CAS  Google Scholar 

  44. Humbert O, Bourg V, Mondot L et al (2019) (18)F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging 46(3):558–568

    Article  Google Scholar 

  45. Chen W, Silverman DH, Delaloye S et al (2006) 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 47(6):904–911

    CAS  Google Scholar 

  46. Cicone F, Minniti G, Romano A et al (2015) Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 42(1):103–111

    Article  CAS  Google Scholar 

  47. Cicone F, Carideo L, Scaringi C et al (2021) Long-term metabolic evolution of brain metastases with suspected radiation necrosis following stereotactic radiosurgery: longitudinal assessment by F-DOPA PET. Neuro Oncol 23(6):1024–1034

    Article  CAS  Google Scholar 

  48. Ceccon G, Lohmann P, Stoffels G et al (2017) Dynamic O-(2–18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol 19(2):281–288

    CAS  Google Scholar 

  49. Galldiks N, Stoffels G, Filss CP et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53(9):1367–1374

    Article  CAS  Google Scholar 

  50. Romagna A, Unterrainer M, Schmid-Tannwald C et al (2016) Suspected recurrence of brain metastases after focused high dose radiotherapy: can [(18)F]FET- PET overcome diagnostic uncertainties? Radiat Oncol 11(1):139

    Article  Google Scholar 

  51. Parent EE, Patel D, Nye JA et al (2020) [(18)F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI Res 10(1):148

    Article  CAS  Google Scholar 

  52. Tom M, DiFilippo F, Smile T et al (2021) 18F-Fluciclovine PET/CT to distinguish radiation necrosis from tumor progression in brain metastases treated with stereotactic radiosurgery: results of a prospective pilot study. Int J Radiat Oncol Biol Phys 111(3):S27

    Article  Google Scholar 

  53. Study to Establish the Diagnostic Performance of 18F Fluciclovine PET in Detecting Recurrent Brain Metastases (REVELATE). https://clinicaltrials.gov/ct2/show/NCT04410133. Accessed May 05, 2022.

  54. Salvestrini V, Greco C, Guerini AE et al (2022) The role of feature-based radiomics for predicting response and radiation injury after stereotactic radiation therapy for brain metastases: a critical review by the young group of the Italian association of radiotherapy and clinical oncology (yAIRO). Transl Oncol 15(1):101275

    Article  CAS  Google Scholar 

  55. Zhang Z, Yang J, Ho A et al (2018) A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur Radiol 28(6):2255–2263

    Article  Google Scholar 

  56. Hettal L, Stefani A, Salleron J et al (2020) Radiomics method for the differential diagnosis of radionecrosis versus progression after fractionated stereotactic body radiotherapy for brain oligometastasis. Radiat Res 193(5):471–480

    Article  CAS  Google Scholar 

  57. Palmisciano P, Haider AS, Nwagwu CD et al (2021) Bevacizumab vs laser interstitial thermal therapy in cerebral radiation necrosis from brain metastases: a systematic review and meta-analysis. J Neurooncol 154(1):13–23

    Article  CAS  Google Scholar 

  58. Sankey EW, Grabowski MM, Srinivasan ES et al (2022) Time to steroid independence after laser interstitial thermal therapy vs medical management for treatment of biopsy-proven radiation necrosis secondary to stereotactic radiosurgery for brain metastasis. Neurosurgery 90(6):684–690

    Article  Google Scholar 

  59. Chao ST, Ahluwalia MS, Barnett GH et al (2013) Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int J Radiat Oncol Biol Phys 87(3):449–457

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was written by ZSM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Samuel T. Chao.

Ethics declarations

Conflict of interest

Samuel Tay Chao (Research support from Blue Earth Diagnostics and Honorarium from Varian Medical Systems). John H. Suh (Scientific advisory board of Philips, NovoCure, and Neutron Therapeutics). Gene H. Barnett (Speaker for Elekta AB, Consultant for Monteris Medical, Inc.).

Ethical approval

This is a review article and no ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayo, Z.S., Halima, A., Broughman, J.R. et al. Radiation necrosis or tumor progression? A review of the radiographic modalities used in the diagnosis of cerebral radiation necrosis. J Neurooncol 161, 23–31 (2023). https://doi.org/10.1007/s11060-022-04225-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04225-y

Keywords

Navigation