Skip to main content

Advertisement

Log in

A consensus definition of supratotal resection for anatomically distinct primary glioblastoma: an AANS/CNS Section on Tumors survey of neurosurgical oncologists

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Supratotal resection (SpTR) of glioblastoma may be associated with improved survival, but published results have varied in part from lack of consensus on the definition and appropriate use of SpTR. A previous small survey of neurosurgical oncologists with expertise performing SpTR found resection 1–2 cm beyond contrast enhancement was an acceptable definition and glioblastoma involving the right frontal and bilateral anterior temporal lobes were considered most amenable to SpTR. The general neurosurgical oncology community has not yet confirmed the practicality of this definition.

Methods

Seventy-six neurosurgical oncology members of the AANS/CNS Tumor Section were surveyed, representing 34.0% of the 223 members who were administered the survey. Participants were presented with 11 definitions of SpTR and rated each definition’s appropriateness. Participants additionally reviewed magnetic resonance imaging for 10 anatomically distinct glioblastomas and assessed the tumor location’s eloquence, perceived equipoise of enrolling patients in a randomized trial comparing gross total to SpTR, and their personal treatment plans.

Results

Most neurosurgeons surveyed agree that gross total plus resection of some non-contrast enhancement (n = 57, 80.3%) or resection 1–2 cm beyond contrast enhancement (n = 52, 73.2%) are appropriate definitions for SpTR. Cases were divided into three anatomically distinct groups by perceived equipoise between gross total and SpTR. The best clinical trial candidates were thought to be right anterior temporal (n = 58, 76.3%) and right frontal (n = 55, 73.3%) glioblastomas.

Conclusion

Support exists among neurosurgical oncologists with varying familiarity performing SpTR to adopt the proposed consensus definition of SpTR of glioblastoma and to potentially investigate the utility of SpTR to treat right anterior temporal and right frontal glioblastomas in a clinical trial. A smaller proportion of general neurosurgical oncologists than SpTR experts would personally treat a left anterior temporal glioblastoma with SpTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding authors on reasonable request.

References

  1. Omuro A, DeAngelis L (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850. https://doi.org/10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  2. Ostrom QT, Gittleman H, Liao P et al (2014) CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 16:iv1–iv63. https://doi.org/10.1093/neuonc/nou223

    Article  PubMed  PubMed Central  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  4. Stupp R, Mason W, van den Bent M et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.4137/cmo.s390

    Article  CAS  PubMed  Google Scholar 

  5. Price SJ, Gillard JH (2011) Imaging biomarkers of brain tumour margin and tumour invasion. Br J Radiol 84(SPEC. ISSUE 2):159–167. https://doi.org/10.1259/bjr/26838774

    Article  Google Scholar 

  6. Simpson JR, Horton J, Scott C et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive radiation therapy oncology group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26(2):239–244. https://doi.org/10.1016/0360-3016(93)90203-8

    Article  CAS  PubMed  Google Scholar 

  7. Jeremic B, Grujicic D, Antunovic V, Djuric L, Stojanovic M, Shibamoto Y (1994) Influence of extent of surgery and tumor location on treatment outcome of patients with glioblastoma multiforme treated with combined modality approach. J Neurooncol 21(2):177–185. https://doi.org/10.1007/BF01052902

    Article  CAS  PubMed  Google Scholar 

  8. Ushio Y, Kochi M, Hamada JI, Kai Y, Nakamura H (2005) Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol Med Chir (Tokyo) 45(9):454–460. https://doi.org/10.2176/nmc.45.454

    Article  Google Scholar 

  9. Stummer W, Reulen H, Meinel T (2008) Extent of resection and survival in glioblastoma multiforme: indentification of and adjustment for bias. Neurosurgery 62(3):564–576. https://doi.org/10.1227/01.NEU.0000297118.47076.5E

    Article  PubMed  Google Scholar 

  10. Davis ME (2016) Glioblastoma: overview of disease and treatment. Clin J Oncol Nurs 20(5):S2–S8

    Article  Google Scholar 

  11. De Leeuw CN, Vogelbaum MA (2019) Supratotal resection in glioma: a systematic review. Neuro Oncol 21(2):179–188. https://doi.org/10.1093/neuonc/noy166

    Article  PubMed  Google Scholar 

  12. Duffau H (2012) Awake surgery for incidental WHO grade II gliomas involving eloquent areas. Acta Neurochir (Wien) 154(4):575–584. https://doi.org/10.1007/s00701-011-1216-x

    Article  Google Scholar 

  13. Incekara F, Koene S, Vincent AJPE, van den Bent MJ, Smits M (2019) Association between supratotal glioblastoma resection and patient survival: a systematic review and meta-analysis. World Neurosurg 127:617-624.e2. https://doi.org/10.1016/j.wneu.2019.04.092

    Article  PubMed  Google Scholar 

  14. Jackson C, Choi J, Khalafallah AM et al (2020) A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J Neurooncol 148(3):419–431. https://doi.org/10.1007/s11060-020-03556-y

    Article  PubMed  Google Scholar 

  15. Khalafallah AM, Huq S, Jimenez AE, Serra R, Bettegowda C, Mukherjee D (2021) “zooming in” on glioblastoma: understanding tumor heterogeneity and its clinical implications in the era of single-cell ribonucleic acid sequencing. Neurosurgery 88(3):477–486. https://doi.org/10.1093/neuros/nyaa305

    Article  PubMed  Google Scholar 

  16. Binabaj MM, Bahrami A, ShahidSales S et al (2018) The prognostic value of MGMT promoter methylation in glioblastoma: a meta-analysis of clinical trials. J Cell Physiol 233(1):378–386. https://doi.org/10.1002/jcp.25896

    Article  CAS  PubMed  Google Scholar 

  17. Zou P, Xu H, Chen P et al (2013) IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS ONE 8(7):1–7. https://doi.org/10.1371/journal.pone.0068782

    Article  CAS  Google Scholar 

  18. Kitabayashi T, Nakada M, Furuta T et al (2014) NC-09: the impact of supratotal resection for glioblastoma. Neuro Oncol 16:v134–v137

    Article  Google Scholar 

  19. Pessina F, Navarria P, Cozzi L et al (2017) Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: is it useful and safe? A single institution retrospective experience. J Neurooncol 135(1):129–139. https://doi.org/10.1007/s11060-017-2559-9

    Article  PubMed  Google Scholar 

  20. Aldave G, Tejada S, Pay E et al (2013) Prognostic value of residual fluorescent tissue in glioblastoma patients after gross total resection in 5-aminolevulinic acid-guided surgery. Neurosurgery 72(6):915–920. https://doi.org/10.1227/NEU.0b013e31828c3974

    Article  PubMed  Google Scholar 

  21. Spetzler RF, Martin NA (2008) A proposed grading system for arteriovenous malformations. J Neurosurg 108(1):186–193. https://doi.org/10.3171/JNS/2008/108/01/0186

    Article  PubMed  Google Scholar 

  22. Friedlein K, Bozhkov Y, Hore N et al (2015) A new functional classification system (FGA/B) with prognostic value for glioma patients. Sci Rep 5:1–11. https://doi.org/10.1038/srep12373

    Article  Google Scholar 

  23. Kahn E, Lane M, Sagher O (2017) Eloquent: history of a word’s adoption into the neurosurgical lexicon. J Neurosurg 127(6):1461–1466. https://doi.org/10.3171/2017.3.JNS17659

    Article  PubMed  Google Scholar 

  24. Fried I (1993) The myth of eloquent cortex, or what is non-eloquent cortex? J Neurosurg 78:1009–1010. https://doi.org/10.3171/2014.12.JNS142826

    Article  CAS  PubMed  Google Scholar 

  25. Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 6(4):495–503. https://doi.org/10.1001/jamaoncol.2019.6143

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li YM, Suki D, Hess K, Sawaya R (2016) The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg 124(4):977–988. https://doi.org/10.3171/2015.5.JNS142087

    Article  PubMed  Google Scholar 

  27. Mampre D, Ehresman J, Pinilla-Monsalve G et al (2018) Extending the resection beyond the contrast-enhancement for glioblastoma: feasibility, efficacy, and outcomes. Br J Neurosurg 32(5):528–535. https://doi.org/10.1080/02688697.2018.1498450

    Article  PubMed  Google Scholar 

  28. De Bonis P, Anile C, Pompucci A et al (2013) The influence of surgery on recurrence pattern of glioblastoma. Clin Neurol Neurosurg 115(1):37–43. https://doi.org/10.1016/j.clineuro.2012.04.005

    Article  PubMed  Google Scholar 

  29. Glenn CA, Baker CM, Conner AK et al (2018) An examination of the role of supramaximal resection of temporal lobe glioblastoma multiforme. World Neurosurg 114:e747–e755. https://doi.org/10.1016/j.wneu.2018.03.072

    Article  PubMed  Google Scholar 

  30. Esquenazi Y, Friedman E, Liu Z, Zhu JJ, Hsu S, Tandon N (2017) The survival advantage of “supratotal” resection of glioblastoma using selective cortical mapping and the subpial technique. Neurosurgery 81(2):275–288. https://doi.org/10.1093/neuros/nyw174

    Article  PubMed  Google Scholar 

  31. Hamada S, Abou-Zeid A (2016) Anatomical resection in glioblastoma: extent of resection and its impact on duration of survival. Egypt J Neurol Psychiatry Neurosurg 53(3):135–145. https://doi.org/10.4103/1110-1083.192655

    Article  Google Scholar 

  32. Lu M, Fu ZH, He XJ et al (2020) T2 fluid-attenuated inversion recovery resection for glioblastoma involving eloquent brain areas facilitated through awake craniotomy and clinical outcome. World Neurosurg 135:e738–e747. https://doi.org/10.1016/j.wneu.2019.12.130

    Article  PubMed  Google Scholar 

  33. Ghogawala Z, Schwartz JS, Benzel EC et al (2016) Increased patient enrollment to a randomized surgical trial through equipoise polling of an expert surgeon panel. Ann Surg 264(1):81–86. https://doi.org/10.1097/SLA.0000000000001483

    Article  PubMed  Google Scholar 

  34. Khalafallah AM, Rakovec M, Bettegowda C et al (2021) A crowdsourced consensus on supratotal resection versus gross total resection for anatomically distinct primary glioblastoma. Neurosurgery 89(4):712–719. https://doi.org/10.1093/neuros/nyab257

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sonabend AM, Zacharia BE, Cloney MB et al (2017) Defining glioblastoma resectability through the wisdom of the crowd: a proof-of-principle study. Neurosurgery 80(4):590–601. https://doi.org/10.1227/NEU.0000000000001374

    Article  PubMed  PubMed Central  Google Scholar 

  36. Choucair A, Levin V, Gutin P et al (1986) Development of multiple lesions during radiation and chemotherapy in patients with gliomas. J Neurosurg 65:654–658

    Article  CAS  Google Scholar 

  37. Hou LC, Veeravagu A, Hsu AR, Tse VCK (2006) Recurrent glioblastoma multiforme: a review of natural history and management options. Neurosurg Focus 20(4):E3. https://doi.org/10.3171/foc.2006.20.4.2

    Article  Google Scholar 

  38. Gaspar LE, Fisher BJ, Macdonald DR et al (1992) Supratentorial malignant glioma: Patterns of recurrence and implications for external beam local treatment. Int J Radiat Oncol Biol Phys 24(1):55–57. https://doi.org/10.1016/0360-3016(92)91021-E

    Article  CAS  PubMed  Google Scholar 

  39. Burger PC, Dubois PJ, Schold SC et al (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58(2):159–169. https://doi.org/10.3171/jns.1983.58.2.0159

    Article  CAS  PubMed  Google Scholar 

  40. Petrecca K, Guiot MC, Panet-Raymond V, Souhami L (2013) Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neurooncol 111(1):19–23. https://doi.org/10.1007/s11060-012-0983-4

    Article  PubMed  Google Scholar 

  41. Darmanis S, Sloan SA, Croote D et al (2017) Single-cell RNA-Seq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma. Cell Rep 21(5):1399–1410. https://doi.org/10.1016/j.celrep.2017.10.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schneider M, Potthoff AL, Keil VC et al (2019) Surgery for temporal glioblastoma: lobectomy outranks oncosurgical-based gross-total resection. J Neurooncol 145(1):143–150. https://doi.org/10.1007/s11060-019-03281-1

    Article  PubMed  Google Scholar 

  43. Shah AH, Mahavadi A, Di L et al (2020) Survival benefit of lobectomy for glioblastoma: moving towards radical supramaximal resection. J Neurooncol 148(3):501–508. https://doi.org/10.1007/s11060-020-03541-5

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roh TH, Kang SG, Moon JH et al (2020) Survival benefit of lobectomy over gross-total resection without lobectomy in cases of glioblastoma in the noneloquent area: a retrospective study. J Neurosurg 132(3):895–901. https://doi.org/10.3171/2018.12.JNS182558

    Article  Google Scholar 

  45. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469. https://doi.org/10.1227/01.NEU.0000349763.42238.E9

    Article  PubMed  Google Scholar 

  46. Rahman M, Abbatematteo J, De Leo EK et al (2017) The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg 127(1):123–131. https://doi.org/10.3171/2016.7.JNS16396

    Article  PubMed  Google Scholar 

  47. Bu LH, Zhang J, Lu JF, Wu JS (2021) Glioma surgery with awake language mapping versus generalized anesthesia: a systematic review. Neurosurg Rev 44(4):1997–2011. https://doi.org/10.1007/s10143-020-01418-9

    Article  PubMed  Google Scholar 

  48. Sanai N, Berger M (2012) Recent surgical management of gliomas. In: Yamanaka R (ed) Glioma. Advances in experimental medicine and biology. Springer, New York, pp 12–25

    Google Scholar 

  49. Hervey-Jumper SL, Berger MS (2019) Insular glioma surgery: an evolution of thought and practice. J Neurosurg 130(1):9–16. https://doi.org/10.3171/2018.10.JNS181519

    Article  PubMed  Google Scholar 

  50. Sanai N, Polley MY, Berger MS (2010) Insular glioma resection: assessment of patient morbidity, survival, and tumor progression—clinical article. J Neurosurg 112(1):1–9. https://doi.org/10.3171/2009.6.JNS0952

    Article  PubMed  Google Scholar 

  51. Alimohamadi M, Shirani M, Shariat Moharari R et al (2016) Application of awake craniotomy and intraoperative brain mapping for surgical resection of insular gliomas of the dominant hemisphere. World Neurosurg 92:151–158. https://doi.org/10.1016/j.wneu.2016.04.079

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Erinma Elibe, MPH and Kristin Zerfas for their contributions toward creating and distributing the online survey, respectively. We would also like to acknowledge members of the Johns Hopkins Neuro-Oncology Surgical Outcomes Lab for their valuable input that has helped inform this project.

Funding

The authors acknowledge assistance for clinical data coordination and retrieval from the Core for Clinical Research Data Acquisition, supported in part by the Johns Hopkins Institute for Clinical and Translational Research (UL1TR001079). The authors received no remuneration for the authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

MR: Methodology, Formal Analysis, Writing—Original Draft, Review and Editing. AMK: Conceptualization, Methodology. OW: Formal Analysis, Writing—Original Draft, Review and Editing. DD: Formal Analysis, Writing—Original Draft, Review and Editing. JPS: Data Acquisition, Writing—Review and Editing. JHS: Data Acquisition, Writing—Review and Editing. DM: Conceptualization, Supervision, Writing—Review and Editing.

Reporting guidelines

We found no applicable reporting guidelines that would apply to this article. By following the EQUATOR reporting guidelines decision tree, (http://www.equatornetwork.org/wp-content/uploads/2013/11/20160226-RG-decision-tree-for-Wizard-CC-BY-26-February-2016.pdf), we found that none of the most popular checklists are appropriate for our study design.

Corresponding author

Correspondence to Debraj Mukherjee.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was reviewed and approved by the Johns Hopkins institutional review board (IRB00196609).

Consent to participate

This study was exempt from obtaining patient consent from patients whose radiographic data was used to generate the survey, as all data was de-identified as required by Health Insurance Portability and Accountability Act (HIPAA) regulations and institutional review board protocol (IRB00196609).

Informed consent

Informed consent was obtained from all participants who completed the survey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3180 KB)

Supplementary file2 (DOCX 1368 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakovec, M., Khalafallah, A.M., Wei, O. et al. A consensus definition of supratotal resection for anatomically distinct primary glioblastoma: an AANS/CNS Section on Tumors survey of neurosurgical oncologists. J Neurooncol 159, 233–242 (2022). https://doi.org/10.1007/s11060-022-04048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04048-x

Keywords

Navigation