Skip to main content
Log in

Stereotactic radiosurgery for IDH wild type glioblastoma: an international, multicenter study

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objective

Isocitrate dehydrogenase (IDH) mutation status is recommended used for diagnosis and prognostication of glioblastoma patients. We studied efficacy and safety of stereotactic radiosurgery (SRS) for patients with recurrent IDH-wt glioblastoma.

Methods

Consecutive patients treated with SRS for IDH-wt glioblastoma were pooled for this retrospective observational international multi-institutional study from institutions participating in the International Radiosurgery Research Foundation.

Results

Sixty patients (median age 61 years) underwent SRS (median dose 15 Gy and median treatment volume: 7.01 cm3) for IDH-wt glioblastoma. All patients had histories of surgery and chemotherapy with temozolomide, and 98% underwent fractionated radiation therapy. MGMT status was available for 42 patients, of which half of patients had MGMT mutant glioblastomas. During median post-SRS imaging follow-up of 6 months, 52% of patients experienced tumor progression. Median post-SRS progression free survival was 4 months. SRS prescription dose of > 14 Gy predicted longer progression free survival [HR 0.357 95% (0.164–0.777) p = 0.009]. Fifty-percent of patients died during post-SRS clinical follow-up that ranged from 1 to 33 months. SRS treatment volume of > 5 cc emerged as an independent predictor of shorter post-SRS overall survival [HR 2.802 95% CI (1.219–6.444) p = 0.02]. Adverse radiation events (ARE) suggestive of radiation necrosis were diagnosed in 6/55 (10%) patients and were managed conservatively in the majority of patients.

Conclusions

SRS prescription dose of > 14 Gy is associated with longer progression free survival while tumor volume of > 5 cc is associated with shorter overall survival after SRS for IDH-wt glioblastomas. AREs are rare and are typically managed conservatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ostrom QT, Cioffi G, Gittleman H et al (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21(Suppl_5):v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  3. Sulman EP, Ismaila N, Armstrong TS et al (2017) Radiation therapy for glioblastoma: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Guideline. J Clin Oncol 35(3):361–369. https://doi.org/10.1200/JCO.2016.70.7562

    Article  CAS  PubMed  Google Scholar 

  4. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khasraw M (2020) Management of glioblastoma: state of the art and future directions. CA Cancer J Clin 70(4):299–312. https://doi.org/10.3322/caac.21613

    Article  PubMed  Google Scholar 

  5. Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186. https://doi.org/10.1038/s41571-020-00447-z

    Article  PubMed  Google Scholar 

  6. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yan J-L, Chang C-N, Chuang C-C et al (2013) Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery. J Formos Med Assoc 112(7):416–420. https://doi.org/10.1016/j.jfma.2012.01.020

    Article  PubMed  Google Scholar 

  8. Bunevicius A, Miller J, Parsons M (2020) Isocitrate dehydrogenase, patient-reported outcomes, and cognitive functioning of glioma patients: a systematic review. Curr Oncol Rep 22(12):120. https://doi.org/10.1007/s11912-020-00978-9

    Article  CAS  PubMed  Google Scholar 

  9. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR (2019) Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15(7):405–417. https://doi.org/10.1038/s41582-019-0220-2

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gessler F, Bernstock JD, Braczynski A et al (2019) Surgery for glioblastoma in light of molecular markers: impact of resection and MGMT promoter methylation in newly diagnosed IDH-1 wild-type glioblastomas. Neurosurgery 84(1):190–197. https://doi.org/10.1093/neuros/nyy049

    Article  PubMed  Google Scholar 

  11. Kreth F-W, Thon N, Simon M et al (2013) Gross total but not incomplete resection of glioblastoma prolongs survival in the era of radiochemotherapy††This study was presented in part (as oral presentations) at the 10th Meeting of the European Association of NeuroOncology (EANO), 6–9 September 2012, Marseille, France and at the 2012 Annual Meeting of the Society for NeuroOncology (SNO), 15–18 November 2012, Washington, DC, USA. Ann Oncol 24(12):3117–3123. https://doi.org/10.1093/annonc/mdt388

    Article  PubMed  Google Scholar 

  12. Marchi F, Sahnane N, Cerutti R et al (2019) The impact of surgery in IDH 1 wild type glioblastoma in relation with the MGMT deregulation. Front Oncol 9:1569. https://doi.org/10.3389/fonc.2019.01569

    Article  PubMed  Google Scholar 

  13. Van Den Bent MJ, Erridge S, Vogelbaum MA et al (2019) Second interim and first molecular analysis of the EORTC randomized phase III intergroup CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q codeletion. JCO 37(15_suppl):2000–2000. https://doi.org/10.1200/JCO.2019.37.15_suppl.2000

    Article  Google Scholar 

  14. Kamson DO, Grossman SA (2021) The role of temozolomide in patients with newly diagnosed wild-type IDH, unmethylated MGMT p glioblastoma during the COVID-19 pandemic. JAMA Oncol 7(5):675. https://doi.org/10.1001/jamaoncol.2020.6732

    Article  PubMed  Google Scholar 

  15. Tran AN, Lai A, Li S et al (2014) Increased sensitivity to radiochemotherapy in IDH1 mutant glioblastoma as demonstrated by serial quantitative MR volumetry. Neuro Oncol 16(3):414–420. https://doi.org/10.1093/neuonc/not198

    Article  CAS  PubMed  Google Scholar 

  16. Kong D-S, Lee J-I, Park K, Kim JH, Lim D-H, Nam D-H (2008) Efficacy of stereotactic radiosurgery as a salvage treatment for recurrent malignant gliomas. Cancer 112(9):2046–2051. https://doi.org/10.1002/cncr.23402

    Article  PubMed  Google Scholar 

  17. Niranjan A, Monaco EA, Kano H, Flickinger JC, Lunsford LD (2018) Stereotactic radiosurgery in the multimodality management of residual or recurrent glioblastoma multiforme. Prog Neurol Surg 31:48–61. https://doi.org/10.1159/000466998

    Article  PubMed  Google Scholar 

  18. Imber BS, Kanungo I, Braunstein S et al (2017) Indications and efficacy of gamma knife stereotactic radiosurgery for recurrent glioblastoma: 2 decades of institutional experience. Neurosurgery 80(1):129–139. https://doi.org/10.1227/NEU.0000000000001344

    Article  PubMed  Google Scholar 

  19. Kim BS, Kong D-S, Seol HJ, Nam D-H, Lee J-I (2017) MGMT promoter methylation status as a prognostic factor for the outcome of gamma knife radiosurgery for recurrent glioblastoma. J Neurooncol 133(3):615–622. https://doi.org/10.1007/s11060-017-2478-9

    Article  CAS  PubMed  Google Scholar 

  20. Cuneo KC, Vredenburgh JJ, Sampson JH et al (2012) Safety and efficacy of stereotactic radiosurgery and adjuvant bevacizumab in patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 82(5):2018–2024. https://doi.org/10.1016/j.ijrobp.2010.12.074

    Article  CAS  PubMed  Google Scholar 

  21. Sharma M, Schroeder JL, Elson P et al (2018) Outcomes and prognostic stratification of patients with recurrent glioblastoma treated with salvage stereotactic radiosurgery. J Neurosurg 131(2):489–499. https://doi.org/10.3171/2018.4.JNS172909

    Article  PubMed  Google Scholar 

  22. Skeie BS, Enger PØ, Brøgger J et al (2012) γ knife surgery versus reoperation for recurrent glioblastoma multiforme. World Neurosurg 78(6):658–669. https://doi.org/10.1016/j.wneu.2012.03.024

    Article  PubMed  Google Scholar 

  23. Morris SAL, Zhu P, Rao M et al (2019) Gamma knife stereotactic radiosurgery in combination with bevacizumab for recurrent glioblastoma. World Neurosurg. 127:e523–e533. https://doi.org/10.1016/j.wneu.2019.03.193

    Article  PubMed  Google Scholar 

  24. Bunevicius A, Sheehan JP (2021) Radiosurgery for glioblastoma. Neurosurg Clin N Am 32(1):117–128. https://doi.org/10.1016/j.nec.2020.08.007

    Article  PubMed  Google Scholar 

  25. Azoulay M, Chang SD, Gibbs IC et al (2020) A Phase I/II trial of 5-fraction stereotactic radiosurgery with 5-mm margins with concurrent temozolomide in newly diagnosed glioblastoma: primary outcomes. Neuro Oncol. https://doi.org/10.1093/neuonc/noaa019

    Article  PubMed  PubMed Central  Google Scholar 

  26. Frischer JM, Marosi C, Woehrer A et al (2016) Gamma knife radiosurgery in recurrent glioblastoma. Stereotact Funct Neurosurg 94(4):265–272. https://doi.org/10.1159/000448924

    Article  PubMed  Google Scholar 

  27. Dono A, Amsbaugh M, Martir M et al (2021) Genomic alterations predictive of response to radiosurgery in recurrent IDH-WT glioblastoma. J Neurooncol 152(1):153–162. https://doi.org/10.1007/s11060-020-03689-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. JCO 28(11):1963–1972. https://doi.org/10.1200/JCO.2009.26.3541

    Article  Google Scholar 

  29. Shaw E, Scott C, Souhami L et al (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47(2):291–298. https://doi.org/10.1016/s0360-3016(99)00507-6

    Article  CAS  PubMed  Google Scholar 

  30. Elliott RE, Parker EC, Rush SC et al (2011) Efficacy of gamma knife radiosurgery for small-volume recurrent malignant gliomas after initial radical resection. World Neurosurg. 76(1_2):128–140. https://doi.org/10.1016/j.wneu.2010.12.053 (discussion 61-62)

    Article  PubMed  Google Scholar 

  31. Hegi ME, Diserens A-C, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  32. Herrlinger U, Tzaridis T, Mack F et al (2019) Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet 393(10172):678–688. https://doi.org/10.1016/S0140-6736(18)31791-4

    Article  CAS  PubMed  Google Scholar 

  33. Park K-J, Kano H, Iyer A et al (2012) Salvage gamma knife stereotactic radiosurgery followed by bevacizumab for recurrent glioblastoma multiforme: a case-control study. J Neurooncol 107(2):323–333. https://doi.org/10.1007/s11060-011-0744-9

    Article  CAS  PubMed  Google Scholar 

  34. Clark GM, McDonald AM, Nabors LB et al (2014) Hypofractionated stereotactic radiosurgery with concurrent bevacizumab for recurrent malignant gliomas: the University of Alabama at Birmingham experience. Neuro-Oncol Pract 1(4):172–177. https://doi.org/10.1093/nop/npu028

    Article  Google Scholar 

  35. Bunevicius A, Sheehan D, Lee Vance M, Schlesinger D, Sheehan JP (2020) Outcomes of Cushing’s disease following Gamma Knife radiosurgery: effect of a center’s growing experience and era of treatment. J Neurosurg. https://doi.org/10.3171/2019.12.JNS192743

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Study design: AB and JS. Material preparation and data collection: all authors. Statistical analysis: AB. The first draft of the manuscript was written by AB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jason Sheehan.

Ethics declarations

Conflict of interest

Author Dr. REW is a member of the Novalis Circle Expert Board. Other authors report no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived given the study design.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunevicius, A., Pikis, S., Kondziolka, D. et al. Stereotactic radiosurgery for IDH wild type glioblastoma: an international, multicenter study. J Neurooncol 155, 343–351 (2021). https://doi.org/10.1007/s11060-021-03883-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03883-8

Keywords

Navigation