Skip to main content

Advertisement

Log in

In situ vaccination with laser interstitial thermal therapy augments immunotherapy in malignant gliomas

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Laser interstitial thermal therapy (LITT) remains a promising advance in the treatment of primary central nervous system malignancies. As indications for its use continue to expand, there has been growing interest in its ability to induce prolonged blood brain barrier (BBB) permeability through hyperthermia, potentially increasing the effectiveness of current therapeutics including BBB-impermeant agents and immunotherapy platforms.

Methods

In this review, we highlight the mechanism of hyperthermic BBB disruption and LITT-induced immunogenic cell death in preclinical models and humans. Additionally, we summarize ongoing clinical trials evaluating a combination approach of LITT and immunotherapy, which will likely serve as the basis for future neuro-oncologic treatment paradigms.

Results

There is evidence to suggest a highly immunogenic response to laser interstitial thermal therapy through activation of both the innate and adaptive immune response. These mechanisms have been shown to potentiate standard methods of oncologic care. There are only a limited number of clinical trials are ongoing to evaluate the utility of LITT in combination with immunotherapy.

Conclusion

LITT continues to be studied as a possible technique to bridge the gap between exciting preclinical results and the limited successes seen in the field of neuro-oncology. Preliminary data suggests a substantial benefit for use of LITT as a combination therapy in several clinical trials. Further investigation is required to determine whether or not this treatment paradigm can translate into long-term durable results for primary intracranial malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bettag M et al (1991) Stereotactic laser therapy in cerebral gliomas. Acta Neurochir Suppl (Wien) 52:81–83

    CAS  Google Scholar 

  2. Sugiyama K et al (1990) Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact Funct Neurosurg 54–55:501–505

    PubMed  Google Scholar 

  3. Lee I, Kalkanis S, Hadjipanayis CG (2016) Stereotactic laser interstitial thermal therapy for recurrent high-grade gliomas. Neurosurgery 79(Suppl 1):S24–S34

    PubMed  Google Scholar 

  4. Silva D et al (2017) Magnetic resonance thermometry and laser interstitial thermal therapy for brain tumors. Neurosurg Clin N Am 28(4):525–533

    PubMed  Google Scholar 

  5. Beaumont TL et al (2018) Magnetic resonance imaging-guided laser interstitial thermal therapy for glioblastoma of the corpus callosum. Neurosurgery 83(3):556–565

    PubMed  PubMed Central  Google Scholar 

  6. Mohammadi AM et al (2014) The role of laser interstitial thermal therapy in enhancing progression-free survival of difficult-to-access high-grade gliomas: a multicenter study. Cancer Med 3(4):971–979

    PubMed  PubMed Central  Google Scholar 

  7. Hawasli AH et al (2014) Stereotactic laser ablation of high-grade gliomas. Neurosurg Focus 37(6):E1

    PubMed  Google Scholar 

  8. Ali FS et al (2019) Cerebral radiation necrosis: incidence, pathogenesis, diagnostic challenges, and future opportunities. Curr Oncol Rep 21(8):66

    PubMed  Google Scholar 

  9. Rahmathulla G et al (2012) Laser interstitial thermal therapy for focal cerebral radiation necrosis: a case report and literature review. Stereotact Funct Neurosurg 90(3):192–200

    PubMed  Google Scholar 

  10. Sharma M et al (2016) Laser interstitial thermal therapy in the management of brain metastasis and radiation necrosis after radiosurgery: An overview. Expert Rev Neurother 16(2):223–232

    CAS  PubMed  Google Scholar 

  11. North RY, Raskin JS, Curry DJ (2017) MRI-guided laser interstitial thermal therapy for epilepsy. Neurosurg Clin N Am 28(4):545–557

    PubMed  Google Scholar 

  12. Prince E et al (2017) Laser interstitial thermal therapy for epilepsy. Curr Neurol Neurosci Rep 17(9):63

    PubMed  Google Scholar 

  13. Shukla ND et al (2017) Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date. Neuropsychiatr Dis Treat 13:2469–2475

    PubMed  PubMed Central  Google Scholar 

  14. Wicks RT et al (2016) Laser interstitial thermal therapy for mesial temporal lobe epilepsy. Neurosurgery 79(Suppl 1):S83–S91

    PubMed  Google Scholar 

  15. Pisipati S et al (2016) Intracerebral laser interstitial thermal therapy followed by tumor resection to minimize cerebral edema. Neurosurg Focus 41(4):E13

    PubMed  Google Scholar 

  16. Wright J et al (2016) Laser interstitial thermal therapy followed by minimal-access transsulcal resection for the treatment of large and difficult to access brain tumors. Neurosurg Focus 41(4):E14

    PubMed  Google Scholar 

  17. Salem U et al (2019) Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT). Cancer Imaging 19(1):65

    PubMed  PubMed Central  Google Scholar 

  18. Leuthardt EC et al (2016) Hyperthermic laser ablation of recurrent glioblastoma leads to temporary disruption of the peritumoral blood brain barrier. PLoS ONE 11(2):e0148613

    PubMed  PubMed Central  Google Scholar 

  19. Mansor NI et al (2019) Crossing the blood-brain barrier: a review on drug delivery strategies for treatment of the central nervous system diseases. Curr Drug Deliv 16:698–711

    CAS  PubMed  Google Scholar 

  20. Hersh DS et al (2016) Evolving drug delivery strategies to overcome the blood brain barrier. Curr Pharm Des 22(9):1177–1193

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiss N et al (2009) The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta 1788(4):842–857

    CAS  PubMed  Google Scholar 

  22. Wang Z, Sun H, Yakisich JS (2014) Overcoming the blood-brain barrier for chemotherapy: limitations, challenges and rising problems. Anticancer Agents Med Chem 14(8):1085–1093

    CAS  PubMed  Google Scholar 

  23. Zhan C, Lu W (2012) The blood-brain/tumor barriers: challenges and chances for malignant gliomas targeted drug delivery. Curr Pharm Biotechnol 13(12):2380–2387

    CAS  PubMed  Google Scholar 

  24. Ostermann S et al (2004) Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin Cancer Res 10(11):3728–3736

    CAS  PubMed  Google Scholar 

  25. Pombo Antunes AR et al (2020) Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. eLife. 9:e52176

    PubMed  PubMed Central  Google Scholar 

  26. Aldape K et al (2019) Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16(8):509–520

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tomaszewski W et al (2019) Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res 25(14):4202–4210

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tabatabai G et al (2006) Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-β-dependent HIF-1α-mediated induction of CXCL12. Brain 129(9):2426–2435

    PubMed  Google Scholar 

  29. Tseng D, Vasquez-Medrano DA, Brown JM (2011) Targeting SDF-1/CXCR4 to inhibit tumour vasculature for treatment of glioblastomas. Br J Cancer 104(12):1805–1809

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vogelbaum MA et al (2018) First-in-human evaluation of the Cleveland Multiport Catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: results of pilot trial 1. J Neurosurg 130:476–485

    Google Scholar 

  31. Brown CE et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375(26):2561–2569

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Eichberg DG et al. (2019) multiple iterations of magnetic resonance-guided laser interstitial thermal ablation of brain metastases: single surgeon's experience and review of the literature. Oper Neurosurg (Hagerstown)

  33. Goldberg SN, Gazelle GS, Mueller PR (2000) Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol 174(2):323–331

    CAS  PubMed  Google Scholar 

  34. Mirza FN, Khatri KA (2017) The use of lasers in the treatment of skin cancer: a review. J Cosmet Laser Ther 19(8):451–458

    PubMed  Google Scholar 

  35. Weston AP, Sharma P (2002) Neodymium:yttrium-aluminum garnet contact laser ablation of Barrett's high grade dysplasia and early adenocarcinoma. Am J Gastroenterol 97(12):2998–3006

    PubMed  Google Scholar 

  36. Ellis MJ et al (2018) Management of an adolescent athlete with sports-related concussion and intraparenchymal hemorrhage. Curr Sports Med Rep 17(1):7–9

    PubMed  Google Scholar 

  37. Vacchelli E et al (2014) Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 3(1):e27878

    PubMed  PubMed Central  Google Scholar 

  38. Ma Y et al (2019) Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 13(10):11967–11980

    CAS  Google Scholar 

  39. Kiyatkin EA, Sharma HS (2009) Permeability of the blood-brain barrier depends on brain temperature. Neuroscience 161(3):926–939

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang H et al (2014) Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 8:307

    PubMed  PubMed Central  Google Scholar 

  41. Yamaguchi T et al (2019) Effect of heat stress on blood-brain barrier integrity in iPS cell-derived microvascular endothelial cell models. PLoS ONE 14(9):e0222113

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ji C et al (2016) Hyperthermia exacerbates the effects of cathepsin L on claudin-1 in a blood-brain barrier model in vitro. Brain Res 1631:72–79

    CAS  PubMed  Google Scholar 

  43. Chen YZ et al (2003) Effect of hyperthermia on tight junctions between endothelial cells of the blood-brain barrier model in vitro. Di Yi Jun Yi Da Xue Xue Bao 23(1):21–24

    PubMed  Google Scholar 

  44. Sabel M et al (2003) Locoregional opening of the rodent blood-brain barrier for paclitaxel using Nd:YAG laser-induced thermo therapy: a new concept of adjuvant glioma therapy? Lasers Surg Med 33(2):75–80

    PubMed  Google Scholar 

  45. Appelboom G et al (2016) Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro Oncol 18(12):1601–1609

    PubMed  PubMed Central  Google Scholar 

  46. Rossmann C et al (2017) Temperature sensitive liposomes combined with thermal ablation: effects of duration and timing of heating in mathematical models and in vivo. PLoS ONE 12(6):e0179131

    PubMed  PubMed Central  Google Scholar 

  47. Mehta A, Oklu R, Sheth RA (2016) Thermal ablative therapies and immune checkpoint modulation: can locoregional approaches effect a systemic response? Gastroenterol Res Pract 2016:9251375

    PubMed  PubMed Central  Google Scholar 

  48. Kakinuma K et al (1996) Drug delivery to the brain using thermosensitive liposome and local hyperthermia. Int J Hyperthermia 12(1):157–165

    CAS  PubMed  Google Scholar 

  49. Kakinuma K et al (1996) Targeting chemotherapy for malignant brain tumor using thermosensitive liposome and localized hyperthermia. J Neurosurg 84(2):180–184

    CAS  PubMed  Google Scholar 

  50. Bredlau AL et al (2018) Localized delivery of therapeutic doxorubicin dose across the canine blood-brain barrier with hyperthermia and temperature sensitive liposomes. Drug Deliv 25(1):973–984

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwiatkowski S et al (2018) Photodynamic therapy-mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107

    CAS  PubMed  Google Scholar 

  52. Lim CK et al (2013) Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett 334(2):176–187

    CAS  PubMed  Google Scholar 

  53. Agostinis P et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    PubMed  PubMed Central  Google Scholar 

  54. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387

    CAS  PubMed  Google Scholar 

  55. Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagnosis Photodyn Ther 7(2):76–85

    CAS  PubMed  Google Scholar 

  56. Cramer SW, Chen CC (2019) Photodynamic therapy for the treatment of glioblastoma. Front Surg 6:81

    PubMed  Google Scholar 

  57. Zhou F et al (2015) InCVAX–a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett 359(2):169–177

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Qi X et al (2016) Development of inCVAX, In situ Cancer Vaccine, and Its Immune Response in Mice with Hepatocellular Cancer. J Clin Cell Immunol. https://doi.org/10.4172/2155-9899.1000438

    Article  PubMed  PubMed Central  Google Scholar 

  59. Naylor MF et al (2017) Treatment of advanced melanoma with laser immunotherapy and ipilimumab. J Biophoton 10(5):618–622

    CAS  Google Scholar 

  60. Laman JD, Weller RO (2013) Drainage of cells and soluble antigen from the CNS to regional lymph nodes. J Neuroimmune Pharmacol 8(4):840–856

    PubMed  PubMed Central  Google Scholar 

  61. Tran D et al (2019) SCIDOT-43. Final data analysis of a pilot study testing the efficacy of using laser interstitial thermal therapy (LITT) to induce temporary disruption of the peritumoral blood brain barrier (BBB) to improve effectiveness of BBB-impermeant chemotherapy in recurrent glioblastoma. Neuro Oncol 21(6):6280–6281

    Google Scholar 

  62. Campian J et al (2019) ATIM-45. long term follow-up of a phase I/II study testing the toxicities and efficacy of pembrolizumab in combination with MRI-guided laser interstitial thermal therapy (LITT) in recurrent malignant gliomas. Neuro Oncol 21(6):611

    Google Scholar 

  63. Ali SC et al (2018) The safety of bevacizumab administered shortly after laser interstitial thermal therapy in glioblastoma: a case series. World Neurosurg 117:e588–e594

    PubMed  Google Scholar 

  64. Verdegaal EM (2016) Adoptive cell therapy: a highly successful individualized therapy for melanoma with great potential for other malignancies. Curr Opin Immunol 39:90–95

    CAS  PubMed  Google Scholar 

  65. De Santis CE et al. (2019) Breast cancer statistics 2019. CA Cancer J Clin.

  66. DeSantis CE et al (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64(4):252–271

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David H. Shin or Ashley P. Ghiaseddin.

Ethics declarations

Conflicts of interest

David H. Shin declares that he has no conflict of interest. Kaitlyn F. Melnick declares that she has no conflict of interest. David D. Tran is one of the primary investigators in the referenced trial at this institution (NCT02311582). David D. Tran also has received grant funding from Celldex, NWBiotech, Novocure, and Merck. David D. Tran has received personal fees from Novocure and prIME Oncology. Ashley P. Ghiaseddin has received personal fees from Monteris Medical. Ashley P. Ghiaseddin has also received research funding support from Orbus Therapeutics.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, D.H., Melnick, K.F., Tran, D.D. et al. In situ vaccination with laser interstitial thermal therapy augments immunotherapy in malignant gliomas. J Neurooncol 151, 85–92 (2021). https://doi.org/10.1007/s11060-020-03557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03557-x

Keywords

Navigation