Skip to main content

Advertisement

Log in

Negative prognostic impact of epidermal growth factor receptor copy number gain in young adults with isocitrate dehydrogenase wild-type glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Young adults with isocitrate-dehydrogenase wild-type (IDH-WT) glioblastoma (GBM) represent a rare, understudied population compared to pediatric high-grade glioma, IDH-mutant GBM, or IDH-WT GBM in older patients. We aimed to explore the prognostic impact of epidermal growth factor receptor copy number gain (EGFR CN gain), one of the most common genetic alterations in IDH-WT glioma, in young adults with IDH-WT GBM.

Methods

We performed a retrospective cohort study of patients 18–45 years old with newly diagnosed, IDH-WT GBM whose tumors underwent next-generation sequencing at our institution between 2014 and 2018. The impact of EGFR CN gain on time to tumor progression (TTP) and overall survival (OS) was assessed. A validation cohort of patients 18–45 years old with IDH-WT GBM was analyzed from The Cancer Genome Atlas (TCGA).

Results

Ten of 28 patients (36%) from our institution had EGFR CN gain, which was associated with shorter TTP (median 6.5 vs. 11.9 months; p = 0.06) and OS (median 16.3 vs. 23.5 months; p = 0.047). The negative prognostic impact of EGFR CN gain on OS persisted in a multivariate model (HR 6.40, 95% CI 1.3–31.0, p = 0.02). In the TCGA cohort (N = 43), EGFR CN gain was associated with shorter TTP and worse OS, although these did not reach statistical significance (TTP, median 11.5 vs. 14.4 months, p = 0.18; OS, median 23.6 vs. 27.8 months; p = 0.18).

Conclusions

EGFR CN gain may be associated with inferior outcomes in young adults with newly diagnosed, IDH-WT GBM, suggesting a potential role for targeting EGFR in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Liao P et al (2017) CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro Oncol 19(suppl_5):v1–v88. https://doi.org/10.1093/neuonc/nox158

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453. https://doi.org/10.2353/ajpath.2007.070011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma. Cancer Res 64(19):6892–6899. https://doi.org/10.1158/0008-5472.CAN-04-1337

    Article  CAS  PubMed  Google Scholar 

  4. Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154. https://doi.org/10.1200/JCO.2009.21.9832

    Article  CAS  PubMed  Google Scholar 

  5. Hamisch C, Ruge M, Kellermann S et al (2017) Impact of treatment on survival of patients with secondary glioblastoma. J Neurooncol 133(2):309–313. https://doi.org/10.1007/s11060-017-2415-y

    Article  CAS  PubMed  Google Scholar 

  6. Popov S, Jury A, Laxton R et al (2013) IDH1-associated primary glioblastoma in young adults displays differential patterns of tumour and vascular morphology. PLoS ONE 8(2):e56328. https://doi.org/10.1371/journal.pone.0056328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jha P, Suri V, Singh G et al (2011) Characterization of molecular genetic alterations in GBMs highlights a distinctive molecular profile in young adults. Diagnostic Mol Pathol 20(4):225–232. https://doi.org/10.1097/PDM.0b013e31821c30bc

    Article  CAS  Google Scholar 

  8. Kiesel S, Pezzutto A, Haas R, Moldenhauer G, Dörken B (1988) Functional evaluation of CD19- and CD22-negative variants of B-lymphoid cell lines. Immunology 64(3):445–450

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vadgaonkar R, Epari S, Chinnaswamy G et al (2018) Distinct demographic profile and molecular markers of primary CNS tumor in 1873 adolescent and young adult patient population. Child’s Nerv Syst 34(8):1489–1495. https://doi.org/10.1007/s00381-018-3785-y

    Article  Google Scholar 

  10. Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529(7584):110–114. https://doi.org/10.1038/nature16490

    Article  CAS  PubMed  Google Scholar 

  11. Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science (80-) 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  Google Scholar 

  12. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  13. Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567. https://doi.org/10.1016/j.ccr.2010.11.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Waitkus MS, Diplas BH, Yan H (2016) Isocitrate dehydrogenase mutations in gliomas. Neuro Oncol 18(1):16–26. https://doi.org/10.1093/neuonc/nov136

    Article  CAS  PubMed  Google Scholar 

  15. Jones C, Karajannis MA, Jones DTW et al (2016) Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro Oncol 19(2):now101. https://doi.org/10.1093/neuonc/now101

    Article  CAS  Google Scholar 

  16. Wick W, van den Bent MJ (2018) First results on the DCVax phase III trial: raising more questions than providing answers. Neuro Oncol 20(10):1283–1284. https://doi.org/10.1093/neuonc/noy125

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferguson SD, Xiu J, Weathers S-P et al (2016) GBM-associated mutations and altered protein expression are more common in young patients. Oncotarget 7(43):69466–69478. https://doi.org/10.18632/oncotarget.11617

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang R, Shi Z, Chen H et al (2016) Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget 7(4):5030–5041. https://doi.org/10.18632/oncotarget.5456

    Article  PubMed  Google Scholar 

  19. Brennan CW, Verhaak RGW, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. https://doi.org/10.1016/j.cell.2013.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Binder ZA, Thorne AH, Bakas S et al (2018) Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 34(1):163–177.e7. https://doi.org/10.1016/j.ccell.2018.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thompson JC, Yee SS, Troxel AB et al (2016) Detection of therapeutically targetable driver and resistance mutations in lung cancer patients by next-generation sequencing of cell-free circulating tumor DNA. Clin Cancer Res 22(23):5772–5782. https://doi.org/10.1158/1078-0432.CCR-16-1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Talevich E, Shain AH, Botton T, Bastian BC (2016) CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS Comput Biol 12(4):e1004873. https://doi.org/10.1371/journal.pcbi.1004873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Lichtenberg T, Hoadley KA et al (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2):400–416.e11. https://doi.org/10.1016/j.cell.2018.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J-R, Xu H-Z, Yao Y, Qin Z-Y (2015) Prognostic value of epidermal growth factor receptor amplification and EGFRvIII in glioblastoma: meta-analysis. Acta Neurol Scand 132(5):310–322. https://doi.org/10.1111/ane.12401

    Article  CAS  PubMed  Google Scholar 

  25. Smith JS, Tachibana I, Passe SM et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93(16):1246–1256

    Article  CAS  PubMed  Google Scholar 

  26. Shinojima N, Tada K, Shiraishi S et al (2003) Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 63(20):6962–6970

    CAS  PubMed  Google Scholar 

  27. Brodbelt A, Greenberg D, Winters T et al (2015) Glioblastoma in England: 2007–2011. Eur J Cancer 51(4):533–542. https://doi.org/10.1016/j.ejca.2014.12.014

    Article  PubMed  Google Scholar 

  28. Curran WJ, Scott CB, Horton J et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85(9):704–710

    Article  PubMed  Google Scholar 

  29. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang P, Zhang W, Wang Y et al (2015) IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget 6(38):40896–40906. https://doi.org/10.18632/oncotarget.5683

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hartmann C, Hentschel B, Simon M et al (2013) Long-term survival in primary glioblastoma with versus without isocitrate dehydrogenase mutations. Clin Cancer Res 19(18):5146–5157. https://doi.org/10.1158/1078-0432.CCR-13-0017

    Article  CAS  PubMed  Google Scholar 

  32. Molenaar RJ, Verbaan D, Lamba S et al (2014) The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro Oncol 16(9):1263–1273. https://doi.org/10.1093/neuonc/nou005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19(4):764–772. https://doi.org/10.1158/1078-0432.CCR-12-3002

    Article  CAS  PubMed  Google Scholar 

  34. Miller JJ, Shih HA, Andronesi OC, Cahill DP (2017) Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications. Cancer 123(23):4535–4546. https://doi.org/10.1002/cncr.31039

    Article  CAS  PubMed  Google Scholar 

  35. Berghoff AS, Kiesel B, Widhalm G et al (2017) Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol 19(11):1460–1468. https://doi.org/10.1093/neuonc/nox054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483. https://doi.org/10.1038/nature10866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karpel-Massler G, Ishida CT, Bianchetti E et al (2017) Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat Commun 8(1):1067. https://doi.org/10.1038/s41467-017-00984-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Molenaar RJ, Botman D, Smits MA et al (2015) Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198. Cancer Res 75(22):4790–4802. https://doi.org/10.1158/0008-5472.CAN-14-3603

    Article  CAS  PubMed  Google Scholar 

  39. Sulkowski PL, Corso CD, Robinson ND et al (2017) 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med 9(375):eaal2463. https://doi.org/10.1126/scitranslmed.aal2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27(4):599–608. https://doi.org/10.1093/annonc/mdw013

    Article  CAS  PubMed  Google Scholar 

  41. Leibetseder A, Ackerl M, Flechl B et al (2013) Outcome and molecular characteristics of adolescent and young adult patients with newly diagnosed primary glioblastoma: a study of the Society of Austrian Neurooncology (SANO). Neuro Oncol 15(1):112–121. https://doi.org/10.1093/neuonc/nos283

    Article  CAS  PubMed  Google Scholar 

  42. Kleinschmidt-DeMasters BK, Meltesen L, McGavran L, Lillehei KO (2006) Characterization of glioblastomas in young adults. Brain Pathol 16(4):273–286. https://doi.org/10.1111/j.1750-3639.2006.00029.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Korshunov A, Sycheva R, Golanov A (2005) The prognostic relevance of molecular alterations in glioblastomas for patients age %3c 50 years. Cancer 104(4):825–832. https://doi.org/10.1002/cncr.21221

    Article  CAS  PubMed  Google Scholar 

  44. Zou P, Xu H, Chen P et al (2013) IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS ONE 8(7):e68782. https://doi.org/10.1371/journal.pone.0068782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lassman AB, Roberts-Rapp L, Sokolova I et al (2019) Comparison of biomarker assays for EGFR: implications for precision medicine in patients with glioblastoma. Clin Cancer Res 25(11):3259–3265. https://doi.org/10.1158/1078-0432.CCR-18-3034

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lassman AB, van den Bent MJ, Gan HK et al (2019) Safety and efficacy of depatuxizumab mafodotin + temozolomide in patients with EGFR -amplified, recurrent glioblastoma: results from an international phase I multicenter trial. Neuro Oncol 21(1):106–114. https://doi.org/10.1093/neuonc/noy091

    Article  PubMed  Google Scholar 

  47. Zhao J, Chen AX, Gartrell RD et al (2019) Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. https://doi.org/10.1038/s41591-019-0349-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Bagley.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffman, D.I., Abdullah, K.G., McCoskey, M. et al. Negative prognostic impact of epidermal growth factor receptor copy number gain in young adults with isocitrate dehydrogenase wild-type glioblastoma. J Neurooncol 145, 321–328 (2019). https://doi.org/10.1007/s11060-019-03298-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03298-6

Keywords

Navigation