Skip to main content
Log in

Clinical outcomes of perioptic tumors treated with hypofractionated stereotactic radiotherapy using CyberKnife® stereotactic radiosurgery

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Stereotactic radiation technique is widely reported as an effective treatment for various types of benign intracranial tumors. However, single fraction radiosurgery (SRS) is not recommended for tumors located close to the optic apparatus due to the restricted radiation tolerance dose of the optic pathway. Recent advances in radiotherapy include advanced frameless radiosurgery using hypofractionated stereotactic radiotherapy (HSRT), and this has become an attractive treatment option for perioptic tumors within 2–3 mm of the optic pathway. Accordingly, the aim of this study was to investigate the clinical outcomes of perioptic tumors treated with HSRT using CyberKnife® (CK) robotic radiosurgery system relative to tumor control, vision preservation and toxicity.

Methods

This retrospective analysis of prospectively collected data included consecutive 100 patients that were diagnosed with and treated for perioptic tumor at the Radiosurgery center, Ramathibodi Hospital during the January 2009 to December 2012 study period.

Results

The median tumor volume was 6.81 cm3 (range 0.37–51.6), and the median prescribed dose was 25 Gy (range 20–35) in 5 fractions (range 3–5). After the median follow-up time of 37.5 months (range 21–103), two patients developed tumor progression at 6 and 34 months post-HSRT. The 5-year overall survival was 97%, and the 5-year local control was 97.5%. At the last follow-up, no vision deterioration or newly developed hypopituitarism was detected in our study.

Conclusions

Although a longer follow-up is needed, HSRT yields a high level of local control and vision preservation, and should be considered a treatment of choice for perioptic tumor located close to the optic apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eisenhauer EA, Therasse P, Bogarerts J et al (2008) New response evaluation criteria in solid tumors: revised RECIST guideline. Eur J Cancer 45:228–247

    Article  Google Scholar 

  2. Kalapurakal JA (2005) Radiation therapy in the management of pediatric craniopharyngiomas: a review. Childs Nerv Syst 21(8–9):808–816

    Article  PubMed  Google Scholar 

  3. Flickinger JC, Kondziolka D, Maitz AH, Lunsford LD (2003) Gamma knife radiosurgery of imaging-diagnosed intracranial meningioma. Int J Radiat Oncol Biol Phys 56(3):801–806

    Article  PubMed  Google Scholar 

  4. Stafford SL, Pollock BE, Foote RL et al (2001) Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery 49(5):1029–1037 (discussion 37–8)

    PubMed  CAS  Google Scholar 

  5. Girkin CA, Comey CH, Lunsford LD, Goodman ML, Kline LB (1997) Radiation optic neuropathy after stereotactic radiosurgery. Ophthalmology 104(10):1634–1643

    Article  PubMed  CAS  Google Scholar 

  6. Tishler RB, Loeffler JS, Lunsford LD et al (1993) Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 27(2):215–221

    Article  PubMed  CAS  Google Scholar 

  7. Fokas E, Henzel M, Surber G, Hamm K, Engenhart-Cabillic R (2014) Stereotactic radiation therapy for benign meningioma: long-term outcome in 318 patients. Int J Radiat Oncol Biol Phys 89(3):569–575

    Article  PubMed  Google Scholar 

  8. Solda F, Wharram B, De Ieso PB et al (2013) Long-term efficacy of fractionated radiotherapy for benign meningiomas. Radiother Oncol 109(2):330–334

    Article  PubMed  Google Scholar 

  9. Stiebel-Kalish H, Reich E, Gal L et al (2012) Visual outcome in meningiomas around anterior visual pathways treated with linear accelerator fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 82(2):779–788

    Article  PubMed  Google Scholar 

  10. Barber SM, Teh BS, Baskin DS (2016) Fractionated stereotactic radiotherapy for pituitary adenomas: single-center experience in 75 consecutive patients. Neurosurgery 79(3):406–417

    Article  PubMed  Google Scholar 

  11. Kim JO, Ma R, Akagami R et al (2013) Long-term outcomes of fractionated stereotactic radiation therapy for pituitary adenomas at the BC Cancer Agency. Int J Radiat Oncol Biol Phys 87(3):528–533

    Article  PubMed  Google Scholar 

  12. Harrabi SB, Adeberg S, Welzel T et al (2014) Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects. Radiat Oncol 9:203

    Article  PubMed  PubMed Central  Google Scholar 

  13. Conti A, Pontoriero A, Midili F et al (2015) CyberKnife multisession stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for perioptic meningiomas: intermediate-term results and radiobiological considerations. Springerplus 4:37

    Article  PubMed  PubMed Central  Google Scholar 

  14. Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD (2006) Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 59(2):244–254 (discussion 254)

    Article  PubMed  Google Scholar 

  15. Metellus P, Regis J, Muracciole X et al (2005) Evaluation of fractionated radiotherapy and gamma knife radiosurgery in cavernous sinus meningiomas: treatment strategy. Neurosurgery 57(5):873–886

    Article  PubMed  Google Scholar 

  16. Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD (2008) Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 62(Suppl 2):733–743

    PubMed  Google Scholar 

  17. Kim JW, Im YS, Nam DH et al (2008) Preliminary report of multisession gamma knife radiosurgery for benign perioptic lesions: visual outcome in 22 patients. J Korean Neurosurg Soc 44(2):67–71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Killory BD, Kresl JJ, Wait SD et al (2009) Hypofractionated CyberKnife radiosurgery for perichiasmatic pituitary adenomas: early results. Neurosurgery 64(2 Suppl):A19–A25

    Article  PubMed  Google Scholar 

  19. Jee TK, Seol HJ, Im YS, Kong DS et al (2014) Fractionated gamma knife radiosurgery for benign perioptic tumors: outcomes of 38 patients in a single institute. Brain Tumor Res Treat 2(2):56–61

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liao HI, Wang CC, Wei KC et al (2014) Fractionated stereotactic radiosurgery using the Novalis system for the management of pituitary adenomas close to the optic apparatus. J Clin Neurosci 21(1):111–115

    Article  PubMed  Google Scholar 

  21. Puataweepong P, Dhanachai M, Hansasuta A et al (2016) The clinical outcome of hypofractionated stereotactic radiotherapy with CyberKnife robotic radiosurgery for perioptic pituitary adenoma. Technol Cancer Res Treat 15(6):Np10–NP15

    Article  PubMed  Google Scholar 

  22. Lee EJ, Cho YH, Yoon K et al (2017) Radiosurgical decompression for benign perioptic tumors causing compressive cranial neuropathies: a feasible alternative to microsurgery? J Neurooncol 131(1):73–81

    Article  PubMed  Google Scholar 

  23. Minniti G, Amichetti M, Enrici RM (2009) Radiotherapy and radiosurgery for benign skull base meningiomas. Radiat Oncol 4:42

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leavitt JA, Stafford SL, Link MJ et al (2013) Long term evaluation of radiation-induced optic neuropathy after single-fraction stereoatctic radiosurgery. Int J Radiat Oncol Biol Phys 87:524–527

    Article  PubMed  Google Scholar 

  25. Pollock BE, Link MJ, Leavitt JA et al (2014) Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery 75:456–460

    Article  PubMed  Google Scholar 

  26. Mayo C, Martel MK, Marks LB et al (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76(3 Suppl):S28–S35

    Article  PubMed  Google Scholar 

  27. Romanelli P, Wowra B, Muacevic A (2007) Multisession CyberKnife radiosurgery for optic nerve sheath meningiomas. Neurosurg Focus 23(6):E11

    Article  PubMed  Google Scholar 

  28. Colombo F, Casentini L, Cavedon C et al (2009) Cyberknife radiosurgery for benign meningiomas: short-term results in 199 patients. Neurosurgery 64(2 Suppl):A7–A13

    Article  PubMed  Google Scholar 

  29. Marchetti M, Bianchi S, Milanesi I et al (2011) Multisession radiosurgery for optic nerve sheath meningiomas: an effective option: preliminary results of a single-center experience. Neurosurgery 69(5):1116–1122 (discussion 22–3)

    PubMed  Google Scholar 

  30. Milano MT, Grimm J, Soltys SG et al (2018) Single- and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2018.01.053

    Article  PubMed  Google Scholar 

  31. Tanaka S, Link MJ, Brown PD et al (2010) Gamma knife radiosurgery for patients with prolactin-secreting pituitary adenomas. World Neurosurg 74(1):147–152

    Article  PubMed  Google Scholar 

  32. Grant RA, Whicker M, Lleva R et al (2014) Efficacy and safety of higher dose stereotactic radiosurgery for functional pituitary adenomas: a preliminary report. World Neurosurg 82(1–2):195–201

    Article  PubMed  Google Scholar 

  33. Lee CC, Vance ML, Xu Z et al (2014) Stereotactic radiosurgery for acromegaly. J Clin Endocrinol Metab 99(4):1273–1281

    Article  PubMed  CAS  Google Scholar 

  34. Weber DC, Momjian S, Pralong FP et al (2011) Adjuvant or radical fractionated stereotactic radiotherapy for patients with pituitary functional and nonfunctional macroadenoma. Radiat Oncol 6:169

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yan JL, Chang CN, Chuang CC et al (2013) Long-term follow-up of patients with surgical intractable acromegaly after linear accelerator radiosurgery. J Formos Med Assoc 112(7):416–420

    Article  PubMed  Google Scholar 

  36. Wilson PJ, De-Loyde KJ, Williams JR, Smee RI (2013) Acromegaly: a single centre’s experience of stereotactic radiosurgery and radiotherapy for growth hormone secreting pituitary tumours with the linear accelerator. J Clin Neurosci 20(11):1506–1513

    Article  PubMed  CAS  Google Scholar 

  37. Castinetti F, Brue T (2009) Radiotherapy and radiosurgery of pituitary adenomas. Presse Med 38(1):133–139

    Article  PubMed  Google Scholar 

  38. Puataweepong P, Dhanachai M, Dangprasert S et al (2009) Comparison of conventional external radiotherapy and stereotactic radiotherapy in the treatment of pituitary adenoma. J Med Assoc Thai 92(3):382–389

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Putipun Puataweepong.

Ethics declarations

Conflict of interest

All authors declare no personal or professional conflicts of interest, and no financial support from the companies that produce and/or distribute the drugs, devices, or materials described in this report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puataweepong, P., Dhanachai, M., Hansasuta, A. et al. Clinical outcomes of perioptic tumors treated with hypofractionated stereotactic radiotherapy using CyberKnife® stereotactic radiosurgery. J Neurooncol 139, 679–688 (2018). https://doi.org/10.1007/s11060-018-2913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-2913-6

Keywords

Navigation