Skip to main content
Log in

Bioinformatic analysis of gene expression and methylation regulation in glioblastoma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Different gene expression and methylation profiles are identified in glioblastoma (GBM). To screen the differentially expressed genes affected by DNA methylation modification and further investigate their prognostic values for GBMs. We included The Cancer Genome Atlas (TCGA) RNA sequencing (676) and DNA methylation (Illumina Human Methylation 450K; 657) databases to detect the gene expression and methylation profiles. Chinese Glioma Genome Atlas (CGGA) RNA sequencing database and TCGA DNA methylation (Illumina Human Methylation 27K; 283) was included for validation. Gene expression and DNA methylation statues were identified using principal components analysis (PCA). A total of 3365 differentially expressed genes were identified. Among them, 2940 genes showed low methylation and high expression, while 425 genes showed high methylation and low expression in GBMs. An eight-gene (C9orf64, OSMR, MDK, MARVELD1, PTRF, MYD88, BIRC3, RPP25) signature was established to divide GBM patients into two groups based on the cut-off point (27.24). The high risk group had shorter overall survival (OS) than low risk group (median OS 15.77 vs. 10.61 months; P = 0.0002). Moreover, the different clinical and molecular features were shown between two groups. These findings could be validated in additional datasets. The differentially expressed genes affected by DNA methylation modification were detected. Our results showed that the eight-gene signature has independently prognostic value for GBM patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma

LGG:

Low-grade glioma

TCGA:

The Cancer Genome Atlas

CGGA:

Chinese Glioma Genome Atlas

OS:

Overall survival

PCA:

Principal components analysis

IDH:

Isocitrate dehydrogenase

MGMT:

O(6)-Methylguanine DNA methyltransferase

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiotherapy Groups, National Cancer Institute of Canada Clinical Trials Group (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  2. Yang P, Zhang W, Wang Y, Peng X, Chen B, Qiu X, Li G, Li S, Wu C, Yao K, Li W, Yan W, Li J, You Y, Chen CC, Jiang T (2015) IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget 6(38):40896–40906. https://doi.org/10.18632/oncotarget.5683

    Article  PubMed  PubMed Central  Google Scholar 

  3. Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116(6):597–602. https://doi.org/10.1007/s00401-008-0455-2

    Article  CAS  PubMed  Google Scholar 

  4. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812. https://doi.org/10.1126/science.1164382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, von Deimling A (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118(4):469–474. https://doi.org/10.1007/s00401-009-0561-9

    Article  PubMed  Google Scholar 

  6. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. https://doi.org/10.1056/NEJMoa0808710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19):1350–1354. https://doi.org/10.1056/NEJM200011093431901

    Article  CAS  PubMed  Google Scholar 

  8. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  9. Karsy M, Neil JA, Guan J, Mahan MA, Colman H, Jensen RL (2015) A practical review of prognostic correlations of molecular biomarkers in glioblastoma. Neurosurg Focus 38(3):E4. https://doi.org/10.3171/2015.1.focus14755

    Article  PubMed  Google Scholar 

  10. Chinot OL, Barrie M, Fuentes S, Eudes N, Lancelot S, Metellus P, Muracciole X, Braguer D, Ouafik L, Martin PM, Dufour H, Figarella-Branger D (2007) Correlation between O6-methylguanine-DNA methyltransferase and survival in inoperable newly diagnosed glioblastoma patients treated with neoadjuvant temozolomide. J Clin Oncol 25(12):1470–1475. https://doi.org/10.1200/JCO.2006.07.4807

    Article  CAS  PubMed  Google Scholar 

  11. Eoli M, Menghi F, Bruzzone MG, De Simone T, Valletta L, Pollo B, Bissola L, Silvani A, Bianchessi D, D’Incerti L, Filippini G, Broggi G, Boiardi A, Finocchiaro G (2007) Methylation of O-6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are overlapping features of secondary glioblastomas with prolonged survival. Clin Cancer Res 13(9):2606–2613. https://doi.org/10.1158/1078-0432.CCR-06-2184

    Article  CAS  PubMed  Google Scholar 

  12. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, Weller M, Mehta MP, Gilbert MR (2008) Correlation of O-6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26(25):4189–4199. https://doi.org/10.1200/JCO.2007.11.5964

    Article  CAS  PubMed  Google Scholar 

  13. Verbeek B, Southgate TD, Gilham DE, Margison GP (2008) O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull 85:17–33. https://doi.org/10.1093/bmb/ldm036

    Article  CAS  PubMed  Google Scholar 

  14. LeBlanc VG, Marra MA (2016) DNA methylation in adult diffuse gliomas. Brief Funct Genom 15(6):491–500. https://doi.org/10.1093/bfgp/elw019

    Google Scholar 

  15. Cheng W, Li M, Cai J, Wang K, Zhang C, Bao Z, Liu Y, Wu A (2015) HDAC4, a prognostic and chromosomal instability marker, refines the predictive value of MGMT promoter methylation. J Neurooncol 122(2):303–312. https://doi.org/10.1007/s11060-014-1709-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bao ZS, Li MY, Wang JY, Zhang CB, Wang HJ, Yan W, Liu YW, Zhang W, Chen L, Jiang T (2014) Prognostic value of a nine-gene signature in glioma patients based on mRNA expression profiling. CNS Neurosci Therapeut 20(2):112–118. https://doi.org/10.1111/cns.12171

    Article  CAS  Google Scholar 

  17. Zhang CB, Zhu P, Yang P, Cai JQ, Wang ZL, Li QB, Bao ZS, Zhang W, Jiang T (2015) Identification of high risk anaplastic gliomas by a diagnostic and prognostic signature derived from mRNA expression profiling. Oncotarget 6(34):36643–36651. https://doi.org/10.18632/oncotarget.5421

    PubMed  PubMed Central  Google Scholar 

  18. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics 56(2):337–344

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Zhang L, Wang Z, Yang F, Wang H, Liang T, Wu F, Lan Q, Wang J, Zhao J (2016) A three-gene signature for prognosis in patients with MGMT promoter-methylated glioblastoma. Oncotarget 7(43):69991–69999. https://doi.org/10.18632/oncotarget.11726

    PubMed  PubMed Central  Google Scholar 

  20. Wang W, Yang F, Zhang L, Chen J, Zhao Z, Wang H, Wu F, Liang T, Yan X, Li J, Lan Q, Wang J, Zhao J (2016) LncRNA profile study reveals four-lncRNA signature associated with the prognosis of patients with anaplastic gliomas. Oncotarget 7(47):77225–77236. https://doi.org/10.18632/oncotarget.12624

    PubMed  PubMed Central  Google Scholar 

  21. Winder DM, Chattopadhyay A, Muralidhar B, Bauer J, English WR, Zhang X, Karagavriilidou K, Roberts I, Pett MR, Murphy G, Coleman N (2011) Overexpression of the oncostatin M receptor in cervical squamous cell carcinoma cells is associated with a pro-angiogenic phenotype and increased cell motility and invasiveness. J Pathol 225(3):448–462. https://doi.org/10.1002/path.2968

    Article  CAS  PubMed  Google Scholar 

  22. Kucia-Tran JA, Tulkki V, Smith S, Scarpini CG, Hughes K, Araujo AM, Yan KY, Botthof J, Perez-Gomez E, Quintanilla M, Cuschieri K, Caffarel MM, Coleman N (2016) Overexpression of the oncostatin-M receptor in cervical squamous cell carcinoma is associated with epithelial-mesenchymal transition and poor overall survival. Br J Cancer 115(2):212–222. https://doi.org/10.1038/bjc.2016.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Natesh K, Bhosale D, Desai A, Chandrika G, Pujari R, Jagtap J, Chugh A, Ranade D, Shastry P (2015) Oncostatin-M differentially regulates mesenchymal and proneural signature genes in gliomas via STAT3 signaling. Neoplasia 17(2):225–237. https://doi.org/10.1016/j.neo.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hibi K, Goto T, Sakuraba K, Shirahata A, Saito M, Ishibashi K, Kigawa G, Nemoto H, Sanada Y (2011) Methylation of OSMR gene is frequently observed in non-invasive colorectal cancer. Anticancer Res 31(4):1293–1295

    PubMed  Google Scholar 

  25. Kim MS, Louwagie J, Carvalho B, Terhaar Sive Droste JS, Park HL, Chae YK, Yamashita K, Liu J, Ostrow KL, Ling S, Guerrero-Preston R, Demokan S, Yalniz Z, Dalay N, Meijer GA, Van Criekinge W, Sidransky D (2009) Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS ONE 4(8):e6555. https://doi.org/10.1371/journal.pone.0006555

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yuan K, Chen Z, Li W, Gao CE, Li G, Guo G, Yang Y, Ai Y, Wu L, Zhang M (2015) MDK protein overexpression correlates with the malignant status and prognosis of non-small cell lung cancer. Arch Med Res 46(8):635–641. https://doi.org/10.1016/j.arcmed.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  27. Li F, Tian P, Zhang J, Kou C (2015) The clinical and prognostic significance of midkine in breast cancer patients. Tumour Biol 36(12):9789–9794. https://doi.org/10.1007/s13277-015-3710-x

    Article  CAS  PubMed  Google Scholar 

  28. Rawnaq T, Dietrich L, Wolters-Eisfeld G, Uzunoglu FG, Vashist YK, Bachmann K, Simon R, Izbicki JR, Bockhorn M, Gungor C (2014) The multifunctional growth factor midkine promotes proliferation and migration in pancreatic cancer. Mol Cancer Res 12(5):670–680. https://doi.org/10.1158/1541-7786.MCR-13-0467

    Article  CAS  PubMed  Google Scholar 

  29. Shao H, Yu X, Wang C, Wang Q, Guan H (2014) Midkine expression is associated with clinicopathological features and BRAF mutation in papillary thyroid cancer. Endocrine 46(2):285–291. https://doi.org/10.1007/s12020-013-0068-y

    Article  CAS  PubMed  Google Scholar 

  30. Tomizawa M, Yu L, Wada A, Tamaoki T, Kadomatsu K, Muramatsu T, Matsubara S, Watanabe K, Ebara M, Saisho H, Sakiyama S, Tagawa M (2003) A promoter region of the midkine gene that is frequently expressed in human hepatocellular carcinoma can activate a suicide gene as effectively as the alpha-fetoprotein promoter. Br J Cancer 89(6):1086–1090. https://doi.org/10.1038/sj.bjc.6601246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jia M, Zhao HZ, Cheng YP, Luo ZB, Zhang JY, Li SS, Xu XJ, Tang YM (2016) High expression of Midkine (MK) indicates poor prognosis in childhood acute lymphoblastic leukemia. Hematology 21(2):69–77. https://doi.org/10.1179/1607845415Y.0000000050

    CAS  PubMed  Google Scholar 

  32. Cortese R, Hartmann O, Berlin K, Eckhardt F (2008) Correlative gene expression and DNA methylation profiling in lung development nominate new biomarkers in lung cancer. Int J Biochem Cell Biol 40(8):1494–1508. https://doi.org/10.1016/j.biocel.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  33. Wang S, Li Y, Han F, Hu J, Yue L, Yu Y, Zhang Y, He J, Zheng H, Shi S, Fu X, Wu H (2009) Identification and characterization of MARVELD1, a novel nuclear protein that is down-regulated in multiple cancers and silenced by DNA methylation. Cancer Lett 282(1):77–86. https://doi.org/10.1016/j.canlet.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  34. Shi M, Wang S, Yao Y, Li Y, Zhang H, Han F, Nie H, Su J, Wang Z, Yue L, Cao J, Li Y (2014) Biological and clinical significance of epigenetic silencing of MARVELD1 gene in lung cancer. Sci Rep 4:7545. https://doi.org/10.1038/srep07545

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cai J, Zhang C, Zhang W, Wang G, Yao K, Wang Z, Li G, Qian Z, Li Y, Jiang T, Jiang C (2016) ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors. Oncoscience 3(7–8):258–265. https://doi.org/10.18632/oncoscience.317

    PubMed  PubMed Central  Google Scholar 

  36. Huertas-Martinez J, Court F, Rello-Varona S, Herrero-Martin D, Almacellas-Rabaiget O, Sainz-Jaspeado M, Garcia-Monclus S, Lagares-Tena L, Buj R, Hontecillas-Prieto L, Sastre A, Azorin D, Sanjuan X, Lopez-Alemany R, Moran S, Roma J, Gallego S, Mora J, Garcia Del Muro X, Giangrande PH, Peinado MA, Alonso J, de Alava E, Monk D, Esteller M, Tirado OM (2017) DNA methylation profiling identifies PTRF/Cavin-1 as a novel tumor suppressor in Ewing sarcoma when co-expressed with caveolin-1. Cancer Lett 386:196–207. https://doi.org/10.1016/j.canlet.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  37. Li Z, Chen J, Chan KW, Qiao L, Wong BC (2011) A possible role of cIAP2 in Helicobacter pylori-associated gastric cancer. Cancer Lett 313(2):192–200. https://doi.org/10.1016/j.canlet.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  38. Wang D, Berglund A, Kenchappa RS, Forsyth PA, Mule JJ, Etame AB (2016) BIRC3 is a novel driver of therapeutic resistance in glioblastoma. Sci Rep 6:21710. https://doi.org/10.1038/srep21710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen YK, Huse SS, Lin LM (2011) Expression of inhibitor of apoptosis family proteins in human oral squamous cell carcinogenesis. Head Neck 33(7):985–998. https://doi.org/10.1002/hed.21582

    Article  PubMed  Google Scholar 

  40. Ohba S, Hirose Y (2016) Current and future drug treatments for glioblastomas. Curr Med Chem 23(38):4309–4316

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Ministry of Science and Technology of China Grant (2012CB825505, 2011BAI08B08); National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2013BAI09B03, 2014BAI04B02); National High Technology Research and Development Program (2012AA02A508); National Natural Science Foundation of China (91229121); Beijing Municipal Administration of Hospitals’ Mission Plan (SML20150501); “13th Five-Year Plan” National Science and Technology supporting plan (2015BAI09B04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizong Zhao.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhao, Z., Wu, F. et al. Bioinformatic analysis of gene expression and methylation regulation in glioblastoma. J Neurooncol 136, 495–503 (2018). https://doi.org/10.1007/s11060-017-2688-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2688-1

Keywords

Navigation