Skip to main content
Log in

Dichloroacetate induced intracellular acidification in glioblastoma: in vivo detection using AACID-CEST MRI at 9.4 Tesla

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Intracellular pH (pHi) plays an important role in the maintenance of normal cell function, and is maintained within a narrow range by the activity of transporters located at the plasma membrane. Modulation of tumor pHi may influence proliferation, apoptosis, chemotherapy resistance, and thermosensitivity. Chemical exchange saturation transfer (CEST) is a novel MRI contrast mechanism that is dependent on cellular pH. Amine and amide concentration-independent detection (AACID) is a recently developed CEST contrast method that is intracellular pH (pHi) weighted. Dichloroacetate (DCA) can alter tumor pHi by inhibiting the enzyme pyruvate dehydrogenase kinase causing reduced lactate (increasing pHi), or by decreasing the expression of monocarboxylate transporters and vacuolar ATPase leading to reduced pHi. Since the net in vivo effect of DCA on pHi is difficult to predict, the purpose of this study was to quantify the magnitude of acute pHi change in glioblastoma after a single DCA injection using AACID CEST MRI. Using a 9.4T MRI scanner, CEST spectra were acquired in six mice approximately 14 days after implanting 105 U87 human glioblastoma multiforme (GBM) cells in the brain, before and after intravenous injection of DCA (dose: 200 mg/kg). Three additional mice received only phosphate buffered saline (PBS) injection and were studied as controls. Repeated measures t test was used to compare AACID changes in tumor and contralateral tissue regions of interest. One hour after DCA injection there was a significant increase in tumor AACID level by 0.04 ± 0.01 corresponding to a 0.16 decrease in pHi, and no change in AACID in contralateral tissue. Inspection of AACID maps following PBS injection showed no differences. The use of DCA to induce a tumor specific pH change detectable by AACID CEST MRI is consistent with previous studies that have shown similar effects for lonidamine and topiramate. This study demonstrates that a single dose of DCA can be used as a pharmacological challenge to induced rapid tumor intracellular acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GBM:

Glioblastoma multiforme

pHi :

Intracellular pH

pHe :

Extracellular pH

PDH:

Pyruvate dehydrogenase

PDK:

Pyruvate dehydrogenase kinase

V-ATPase:

Vacuolar-type H+-ATPase

PBS:

Phosphate buffered saline

CEST:

Chemical exchange saturation transfer

DCA:

Dichloroacetate

RF:

Radiofrequency

MTRasym :

Asymmetric magnetization transfer ratio

MT:

Magnetization transfer

AACID:

Amine and amide concentration-independent detection

FSE:

Fast spin-echo

WASSR:

Water saturation shift referencing

ROI:

Region of interest

References

  1. Kanu OO, Mehta A, Di C, Lin N, Bortoff K, Bigner DD, Yan H, Adamson DC (2009) Glioblastoma multiforme: a review of therapeutic targets. Expert Opin Ther Targets 13:701–718. https://doi.org/10.1517/14728220902942348

    Article  CAS  PubMed  Google Scholar 

  2. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507. https://doi.org/10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  3. Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher EA, Mickey BE, Pan E, Sherry AD, Bachoo RM, Takahashi M (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci USA 111:4542–4547. https://doi.org/10.1073/pnas.1323855111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holland EC (2000) Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 97:6242–6244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Easaw JC, Mason WP, Perry J, Laperriere N, Eisenstat DD, Del Maestro R, Belanger K, Fulton D, Macdonald D (2011) Canadian recommendations for the treatment of recurrent or progressive glioblastoma multiforme. Curr Oncol 18:126–136

    Article  Google Scholar 

  6. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, Wang S, Yan K, Fu DX, Ford E, Tyler B, Blakeley J, Laterra J, van Zijl PC (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134. https://doi.org/10.1038/nm.2268

    Article  CAS  PubMed  Google Scholar 

  7. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    CAS  PubMed  Google Scholar 

  8. Stubbs M, Bhujwalla ZM, Tozer GM, Rodrigues LM, Maxwell RJ, Morgan R, Howe FA, Griffiths JR (1992) An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed 5:351–359

    Article  CAS  PubMed  Google Scholar 

  9. Ha DH, Choi S, Oh JY, Yoon SK, Kang MJ, Kim KU (2013) Application of 31P MR spectroscopy to the brain tumors. Korean J Radiol 14:477–486. https://doi.org/10.3348/kjr.2013.14.3.477

    Article  PubMed  PubMed Central  Google Scholar 

  10. Monika Cichocka JK, Andrzej Urbanik (2015) PH measurements of the brain using phosphorus magnetic resonance spectroscopy (31PMRS) in healthy men: comparison of two analysis methods. Pol J Radiol. https://doi.org/10.12659/PJR.895178

    PubMed  PubMed Central  Google Scholar 

  11. Oberhaensli RD, Galloway GJ, Hilton-Jones D, Bore PJ, Styles P, Rajagopalan B, Taylor DJ, Radda GK (1987) The study of human organs by phosphorus-31 topical magnetic resonance spectroscopy. Br J Radiol 60:367–373. https://doi.org/10.1259/0007-1285-60-712-367

    Article  CAS  PubMed  Google Scholar 

  12. Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ (2002) Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR Biomed 15:18–27

    Article  CAS  PubMed  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  14. Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. https://doi.org/10.1038/nrc1478

    Article  CAS  PubMed  Google Scholar 

  15. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118:3930–3942. https://doi.org/10.1172/JCI36843

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouyssegur J, Gatenby RA, Rivoltini L, Fais S (2010) Proton dynamics in cancer. J Transl Med 8:57. https://doi.org/10.1186/1479-5876-8-57

    Article  PubMed  PubMed Central  Google Scholar 

  17. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10:767–777. https://doi.org/10.1038/nrd3554

    Article  CAS  PubMed  Google Scholar 

  18. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677. https://doi.org/10.1038/nrc3110

    Article  CAS  PubMed  Google Scholar 

  19. Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29:541–549. https://doi.org/10.1016/s0305-7372(03)00106-3

    Article  CAS  PubMed  Google Scholar 

  20. Park HJ, Makepeace CM, Lyons JC, Song CW (1996) Effect of intracellular acidity and ionomycin on apoptosis in HL-60 cells. Eur J Cancer 32A:540–546

    Article  CAS  PubMed  Google Scholar 

  21. Park HJ, Lyons JC, Ohtsubo T, Song CW (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80:1892–1897. https://doi.org/10.1038/sj.bjc.6690617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shrode LD, Tapper H, Grinstein S (1997) Role of intracellular pH in proliferation, transformation, and apoptosis. J Bioenerg Biomembr 29:393–399

    Article  CAS  PubMed  Google Scholar 

  23. Hubesch B, Sappey-Marinier D, Roth K, Meyerhoff DJ, Matson GB, Weiner MW (1990) P-31 MR spectroscopy of normal human brain and brain tumors. Radiology 174:401–409. https://doi.org/10.1148/radiology.174.2.2296651

    Article  CAS  PubMed  Google Scholar 

  24. McVicar N, Li AX, Goncalves DF, Bellyou M, Meakin SO, Prado MA, Bartha R (2014) Quantitative tissue pH measurement during cerebral ischemia using amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood Flow Metab 34:690–698. https://doi.org/10.1038/jcbfm.2014.12

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zong X, Wang P, Kim SG, Jin T (2014) Sensitivity and source of amine-proton exchange and amide-proton transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med 71:118–132. https://doi.org/10.1002/mrm.24639

    Article  CAS  PubMed  Google Scholar 

  26. Zhou JY, Payen JF, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090. https://doi.org/10.1038/nm907

    Article  CAS  PubMed  Google Scholar 

  27. Zhou J LB, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50 https://doi.org/10.1002/mrm.10651

  28. Murray RKGD (2003) Membranes: structure and function. McGraw-Hill Companies, Inc, New York, pp 415–433

    Google Scholar 

  29. McVicar N, Li AX, Meakin SO, Bartha R (2015) Imaging chemical exchange saturation transfer (CEST) effects following tumor-selective acidification using lonidamine. NMR Biomed 28:566–575. https://doi.org/10.1002/nbm.3287

    Article  CAS  PubMed  Google Scholar 

  30. Marathe K, McVicar N, Li A, Bellyou M, Meakin S, Bartha R (2016) Topiramate induces acute intracellular acidification in glioblastoma. J Neurooncol 130:465–472. https://doi.org/10.1007/s11060-016-2258-y

    Article  CAS  PubMed  Google Scholar 

  31. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994. https://doi.org/10.1038/sj.bjc.6604554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ishiguro T, Ishiguro M, Ishiguro R, Iwai S (2012) Cotreatment with dichloroacetate and omeprazole exhibits a synergistic antiproliferative effect on malignant tumors. Oncol Lett 3:726–728. https://doi.org/10.3892/ol.2012.552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51. https://doi.org/10.1016/j.ccr.2006.10.020

    Article  CAS  PubMed  Google Scholar 

  34. Dai Y, Xiong X, Huang G, Liu J, Sheng S, Wang H, Qin W (2014) Dichloroacetate enhances adriamycin-induced hepatoma cell toxicity in vitro and in vivo by increasing reactive oxygen species levels. PLoS ONE 9:e92962. https://doi.org/10.1371/journal.pone.0092962

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kankotia S, Stacpoole PW (2014) Dichloroacetate and cancer: new home for an orphan drug? Biochim Biophys Acta 1846:617–629. https://doi.org/10.1016/j.bbcan.2014.08.005

    CAS  PubMed  Google Scholar 

  36. Cairns RA, Papandreou I, Sutphin PD, Denko NC (2007) Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci USA 104:9445–9450. https://doi.org/10.1073/pnas.0611662104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar A, Kant S, Singh SM (2013) Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: a role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicol Appl Pharmacol 273:196–208. https://doi.org/10.1016/j.taap.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  38. Park JM, Recht LD, Josan S, Merchant M, Jang T, Yen YF, Hurd RE, Spielman DM, Mayer D (2013) Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized (13)C magnetic resonance spectroscopic imaging. Neuro Oncol 15:433–441. https://doi.org/10.1093/neuonc/nos319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanchez WY, McGee SL, Connor T, Mottram B, Wilkinson A, Whitehead JP, Vuckovic S, Catley L (2013) Dichloroacetate inhibits aerobic glycolysis in multiple myeloma cells and increases sensitivity to bortezomib. Br J Cancer 108:1624–1633. https://doi.org/10.1038/bjc.2013.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li AX, Suchy M, Li C, Gati JS, Meakin S, Hudson RH, Menon RS, Bartha R (2011) In vivo detection of MRI-PARACEST agents in mouse brain tumors at 9.4 T. Magn Reson Med 66:67–72. https://doi.org/10.1002/mrm.22772

    Article  CAS  PubMed  Google Scholar 

  41. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PC (2009) Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn Reson Med 61:1441–1450. https://doi.org/10.1002/mrm.21873

    Article  PubMed  PubMed Central  Google Scholar 

  42. Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E, Maguire C, Gammer TL, Mackey JR, Fulton D, Abdulkarim B, McMurtry MS, Petruk KC (2010) Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2:31ra34. https://doi.org/10.1126/scitranslmed.3000677

    Article  CAS  PubMed  Google Scholar 

  43. Pecqueur C, Oliver L, Oizel K, Lalier L, Vallette FM (2013) Targeting metabolism to induce cell death in cancer cells and cancer stem cells. Int J Cell Biol 2013:805975 https://doi.org/10.1155/2013/805975

    Article  PubMed  PubMed Central  Google Scholar 

  44. Desmond KL, Moosvi F, Stanisz GJ (2014) Mapping of amide, amine, and aliphatic peaks in the CEST spectra of murine xenografts at 7 T. Magn Reson Med 71:1841–1853. https://doi.org/10.1002/mrm.24822

    Article  PubMed  Google Scholar 

  45. Feldman SC, Chu D, Schulder M, Pawar R, Barry M, Cho E, Liu W (2009) The blood oxygen level-dependent functional MR imaging signal can be used to identify brain tumors and distinguish them from normal tissue. Am J Neuroradiol 30:389–395. https://doi.org/10.3174/ajnr.A1326

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Ontario Institute of Cancer Research (OICR) Smarter Imaging Program (Grant Number 00807) with support from Brain Canada. The authors wish to thank Miranda Bellyou for assistance with animal preparation and handling. Thanks to Misan University-Ministry of Higher Education and Scientific Research, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bartha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All applicable national and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albatany, M., Li, A., Meakin, S. et al. Dichloroacetate induced intracellular acidification in glioblastoma: in vivo detection using AACID-CEST MRI at 9.4 Tesla. J Neurooncol 136, 255–262 (2018). https://doi.org/10.1007/s11060-017-2664-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2664-9

Keywords

Navigation