Skip to main content
Log in

Pseudoprogression in pediatric low-grade glioma after irradiation

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

This study aimed to assess the incidence and management of pseudoprogression after radiation therapy (RT) in patients with pediatric low-grade glioma (LGG). This retrospective review included patients aged 21 years or younger with intracranial LGG treated with curative-intent RT. Pseudoprogression was defined as an increase in tumor size by ≥10% in at least two dimensions between two and three consecutive MR imaging studies. Overall survival (OS) and event-free survival (EFS) were measured from the first day of RT. EFS was defined as survival without true progression or secondary high-grade glioma. Sixty-two of 221 patients developed pseudoprogression, with a 10-year cumulative incidence of 29.0% (95% CI 23.0–35.2). Median time to pseudoprogression was 6.1 months after RT. Symptomatic pseudoprogression was managed with subtotal resection, shunt/Ommaya reservoir placement, or corticosteroids in 11 (18%), 7 (11%), and 2 patients (3%), respectively. The remaining tumors were observed (68%). Patients with pilocytic astrocytoma (PA) had 5.4-fold greater odds of developing pseudoprogression relative to tumors of other histology (odds ratio 95% CI 2.5–11.4, P < 0.0001). Among patients with PA (n = 127), the 10-year cumulative incidence of pseudoprogression was 42.9%. In this group, pseudoprogression was associated with improved 10-year EFS (84.5% vs. 58.5%, P = 0.008) and OS (98.0% vs. 91.2%, P = 0.03). Pseudoprogression after irradiation was common, especially in patients with pilocytic astrocytoma, and was associated with improved survival. Knowledge of the incidence and temporal course of pseudoprogression may help avoid unnecessary salvage therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Qaddoumi I, Sultan I, Gajjar A (2009) Outcome and prognostic features in pediatric gliomas: a review of 6212 cases from the surveillance, epidemiology, and end results database. Cancer 115:5761–5770. doi:10.1002/cncr.24663

    Article  PubMed  PubMed Central  Google Scholar 

  2. Merchant TE, Kun LE, Wu S, Xiong X, Sanford RA, Boop FA (2009) Phase II trial of conformal radiation therapy for pediatric low-grade glioma. J Clin Oncol 27:3598–3604. doi:10.1200/JCO.2008.20.9494

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laack NN, Schomas DA, Schomberg PJ, Brown PD Pediatric, Intracranial, Low-Grade Glioma; 20-year experience with long-term follow-up at the Mayo Clinic. Int J Radiat Oncol Biol Phys 69:S34–S35 doi:10.1016/j.ijrobp.2007.07.064

  4. Gnekow AK, Falkenstein F, von Hornstein S, Zwiener I, Berkefeld S, Bison B, Warmuth-Metz M, Driever PH, Soerensen N, Kortmann RD, Pietsch T, Faldum A (2012) Long-term follow-up of the multicenter, multidisciplinary treatment study HIT-LGG-1996 for low-grade glioma in children and adolescents of the German Speaking Society of Pediatric Oncology and Hematology. Neuro Oncol 14:1265–1284. doi:10.1093/neuonc/nos202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naftel RP, Pollack IF, Zuccoli G, Deutsch M, Jakacki RI (2015) Pseudoprogression of low-grade gliomas after radiotherapy. Pediatr Blood Cancer 62:35–39. doi:10.1002/pbc.25179

    Article  PubMed  Google Scholar 

  6. Chawla S, Korones DN, Milano MT, Hussain A, Hussien AR, Muhs AG, Mangla M, Silberstein H, Ekholm S, Constine LS (2012) Spurious progression in pediatric brain tumors. J Neurooncol 107:651–657. doi:10.1007/s11060-011-0794-z

    Article  PubMed  Google Scholar 

  7. Bakardjiev AI, Barnes PD, Goumnerova LC, Black PM, Scott RM, Pomeroy SL, Billett A, Loeffler JS, Tarbell NJ (1996) Magnetic resonance imaging changes after stereotactic radiation therapy for childhood low grade astrocytoma. Cancer 78:864–873. doi:10.1002/(SICI)1097-0142(19960815)78:4<864::AID-CNCR25>3.0.CO;2-S

    Article  CAS  PubMed  Google Scholar 

  8. Mannina EM, Bartlett GK, McMullen KP (2016) Extended volumetric follow-up of juvenile pilocytic astrocytomas treated with proton beam therapy. Int J Part Ther 3:291–299. doi:10.14338/ijpt-16-00020.1

    Article  Google Scholar 

  9. Fine JP, Gray RJ (1999) A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 94:496–509 doi. Doi:10.2307/2670170

    Article  Google Scholar 

  10. Kruser TJ, Mehta MP, Robins HI (2013) Pseudoprogression after glioma therapy: a comprehensive review. Expert Rev Neurother 13:389–403. doi:10.1586/ern.13.7

    Article  CAS  PubMed  Google Scholar 

  11. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, Bertorelle R, Bartolini S, Calbucci F, Andreoli A, Frezza G, Leonardi M, Spagnolli F, Ermani M (2008) MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol 26:2192–2197. doi:10.1200/JCO.2007.14.8163

    Article  PubMed  Google Scholar 

  12. Lin AL, White M, Miller-Thomas MM, Fulton RS, Tsien CI, Rich KM, Schmidt RE, Tran DD, Dahiya S (2016) Molecular and histologic characteristics of pseudoprogression in diffuse gliomas. J Neurooncol 130:529–533. doi:10.1007/s11060-016-2247-1

    Article  CAS  PubMed  Google Scholar 

  13. Lin AL, Liu J, Evans J, Leuthardt EC, Rich KM, Dacey RG, Dowling JL, Kim AH, Zipfel GJ, Grubb RL, Huang J, Robinson CG, Simpson JR, Linette GP, Chicoine MR, Tran DD (2014) Codeletions at 1p and 19q predict a lower risk of pseudoprogression in oligodendrogliomas and mixed oligoastrocytomas. Neuro Oncol 16:123–130. doi:10.1093/neuonc/not142

    Article  CAS  PubMed  Google Scholar 

  14. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, Fink K, Souhami L, Laperriere N, Curran W, Mehta M (2013) Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol 31:337–343. doi:10.1200/JCO.2012.43.2674

    Article  CAS  PubMed  Google Scholar 

  15. Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, Coons S, Ricci P, Bullard D, Brown PD, Stelzer K, Brachman D, Suh JH, Schultz CJ, Bahary JP, Fisher BJ, Kim H, Murtha AD, Bell EH, Won M, Mehta MP, Curran WJ Jr (2016) Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med 374:1344–1355. doi:10.1056/NEJMoa1500925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wick W, Roth P, Hartmann C, Hau P, Nakamura M, Stockhammer F, Sabel MC, Wick A, Koeppen S, Ketter R, Vajkoczy P, Eyupoglu I, Kalff R, Pietsch T, Happold C, Galldiks N, Schmidt-Graf F, Bamberg M, Reifenberger G, Platten M, von Deimling A, Meisner C, Wiestler B, Weller M, Neurooncology Working Group of the German Cancer Society (2016) Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 18:1529–1537. doi:10.1093/neuonc/now133

    PubMed  Google Scholar 

  17. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. doi:10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  18. Parvez K, Parvez A, Zadeh G (2014) The diagnosis and treatment of pseudoprogression, radiation necrosis and brain tumor recurrence. Int J Mol Sci 15:11832–11846. doi:10.3390/ijms150711832

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972. doi:10.1200/JCO.2009.26.3541

    Article  PubMed  Google Scholar 

  20. Lassen-Ramshad Y, Petersen JB, Tietze A, Borghammer P, Mahajan A, McGovern SL (2015) Pseudoprogression after proton radiotherapy for pediatric low grade glioma. Acta Oncol 54:1701–1702. doi:10.3109/0284186X.2015.1078498

    Article  PubMed  Google Scholar 

  21. Chourmouzi D, Papadopoulou E, Konstantinidis M, Syrris V, Kouskouras K, Haritanti A, Karkavelas G, Drevelegas A (2014) Manifestations of pilocytic astrocytoma: a pictorial review. Insights Imaging 5:387–402 doi:10.1007/s13244-014-0328-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the American Cancer Society [Grant No. SPAMM-15-210-01-COUN] and by the American Lebanese Syrian Associated Charities (ALSAC). The authors thank Keith A. Laycock, Ph.D., for scientific editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Merchant.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 567 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsang, D.S., Murphy, E.S., Lucas, J.T. et al. Pseudoprogression in pediatric low-grade glioma after irradiation. J Neurooncol 135, 371–379 (2017). https://doi.org/10.1007/s11060-017-2583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2583-9

Keywords

Navigation