Skip to main content

Advertisement

Log in

Radiomic features predict Ki-67 expression level and survival in lower grade gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To investigate the radiomic features associated with Ki-67 expression in lower grade gliomas and assess the prognostic values of these features. Patients with lower grade gliomas (n = 117) were randomly assigned into the training (n = 78) and validation (n = 39) sets. A total of 431 radiological features were extracted from each patient. Differential radiological features between the low and high Ki-67 expression groups were screened by significance analysis of microarrays. Then, generalized linear analysis was performed to select features that could predict the Ki-67 expression level. Predictive efficiencies were further evaluated in the validation set. Cox regression analysis was performed to investigate the prognostic values of Ki-67 expression level and Ki-67-related radiological features. A group of nine radiological features were screened for prediction of Ki-67 expression status; these achieved accuracies of 83.3% and 88.6% (areas under the curves, 0.91 and 0.93) in the training and validation sets, respectively. Of these features, only spherical disproportion (SD) was found to be a prognostic factor. Patients in the high SD group exhibited worse outcomes in the whole cohort (overall survival, p < 0.0001; progression-free survival, p < 0.0001). Ki-67 expression level and SD were independent prognostic factors in the multivariate Cox regression analysis. This study identified a radiomic signature for prediction of Ki-67 expression level as well as a prognostic radiological feature in patients with lower grade gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498. doi:10.1056/NEJMoa1402121

    Article  Google Scholar 

  2. van den Bent MJ (2014) Practice changing mature results of RTOG study 9802: another positive PCV trial makes adjuvant chemotherapy part of standard of care in low-grade glioma. Neuro Oncol 16:1570–1574. doi:10.1093/neuonc/nou297

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kogiku M, Ohsawa I, Matsumoto K et al (2008) Prognosis of glioma patients by combined immunostaining for survivin, Ki-67 and epidermal growth factor receptor. J Clin Neurosci 15:1198–1203. doi:10.1016/j.jocn.2007.11.012

    Article  CAS  PubMed  Google Scholar 

  4. Wakimoto H, Aoyagi M, Nakayama T et al (1996) Prognostic significance of Ki-67 labeling indices obtained using MIB-1 monoclonal antibody in patients with supratentorial astrocytomas. Cancer 77:373–380

    Article  CAS  PubMed  Google Scholar 

  5. Duregon E, Bertero L, Pittaro A et al (2016) Ki-67 proliferation index but not mitotic thresholds integrates the molecular prognostic stratification of lower grade gliomas. Oncotarget 7:21190–21198. doi:10.18632/oncotarget.8498

    Article  PubMed  PubMed Central  Google Scholar 

  6. Johannessen AL, Torp SH (2006) The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res 12:143–147

    Article  PubMed  Google Scholar 

  7. Zeng A, Hu Q, Liu Y et al (2015) IDH1/2 mutation status combined with Ki-67 labeling index defines distinct prognostic groups in glioma. Oncotarget 6:30232–30238. doi:10.18632/oncotarget.4920

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu Y, Tang K, Yan W et al (2013) Identifying Ki-67 specific miRNA–mRNA interactions in malignant astrocytomas. Neurosci Lett 546:36–41. doi:10.1016/j.neulet.2013.04.030

    Article  CAS  PubMed  Google Scholar 

  9. Bai HX, Lee AM, Yang L et al (2016) Imaging genomics in cancer research: limitations and promises. Br J Radiol 89:20151030. doi:10.1259/bjr.20151030

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuo MD, Jamshidi N (2014) Behind the numbers: Decoding molecular phenotypes with radiogenomics–guiding principles and technical considerations. Radiology 270:320–325. doi:10.1148/radiol.13132195

    Article  PubMed  Google Scholar 

  11. Ryu YJ, Choi SH, Park SJ et al (2014) Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity. PLoS One 9:e108335. doi:10.1371/journal.pone.0108335

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu C, Zhang H, Pan Y et al (2012) Towards MIB-1 and p53 detection in glioma magnetic resonance image: a novel computational image analysis method. Phys Med Biol 57:8393–8404. doi:10.1088/0031-9155/57/24/8393

    Article  PubMed  Google Scholar 

  13. Yan W, Zhang W, You G et al (2012) Molecular classification of gliomas based on whole genome gene expression: a systematic report of 225 samples from the Chinese Glioma Cooperative Group. Neuro Oncol 14:1432–1440. doi:10.1093/neuonc/nos263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. doi:10.1038/ncomms5006

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai J, Zhang C, Zhang W et al (2016) ATRX, IDH1-R132H and Ki-67 immunohistochemistry as a classification scheme for astrocytic tumors. Oncoscience 3:258–265 doi:10.18632/oncoscience.317

    PubMed  PubMed Central  Google Scholar 

  16. Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12:862–866. doi:10.1016/j.jacr.2015.04.019

    Article  PubMed  Google Scholar 

  17. Zinn PO, Mahajan B, Sathyan P et al (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS ONE 6:e25451. doi:10.1371/journal.pone.0025451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kickingereder P, Gotz M, Muschelli J et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res. doi:10.1158/1078-0432.CCR-16-0702

    PubMed  Google Scholar 

  19. Zhang B, Chang K, Ramkissoon S et al (2016) Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neuro Oncol. doi:10.1093/neuonc/now121

    Google Scholar 

  20. Korfiatis P, Kline TL, Coufalova L et al (2016) MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas. Med Phys 43:2835. doi:10.1118/1.4948668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alexiou GA, Zikou A, Tsiouris S et al (2014) Correlation of diffusion tensor, dynamic susceptibility contrast MRI and (99 m)Tc-Tetrofosmin brain SPECT with tumour grade and Ki-67 immunohistochemistry in glioma. Clin Neurol Neurosurg 116:41–45. doi:10.1016/j.clineuro.2013.11.003

    Article  PubMed  Google Scholar 

  22. Fudaba H, Shimomura T, Abe T et al (2014) Comparison of multiple parameters obtained on 3 T pulsed arterial spin-labeling, diffusion tensor imaging, and MRS and the Ki-67 labeling index in evaluating glioma grading. AJNR 35:2091–2098. doi:10.3174/ajnr.A4018

    Article  CAS  PubMed  Google Scholar 

  23. Molina D, Perez-Beteta J, Martinez-Gonzalez A et al (2016) Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput Biol Med 78:49–57. doi:10.1016/j.compbiomed.2016.09.011

    Article  PubMed  Google Scholar 

  24. Chen W-J, He D-S, Tang R-X et al (2015) Ki-67 is a valuable prognostic factor in gliomas: evidence from a systematic review and meta-analysis. Asian Pac J Cancer Prev 16:411–420. doi:10.7314/apjcp.2015.16.2.411

    Article  PubMed  Google Scholar 

  25. Itakura H, Achrol AS, Mitchell LA et al (2015) Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 7:303ra138. doi:10.1126/scitranslmed.aaa7582

    Article  PubMed  PubMed Central  Google Scholar 

  26. Larsson O, Wahlestedt C, Timmons JA (2005) Considerations when using the significance analysis of microarrays (SAM) algorithm. BMC Bioinformatics 6:129. doi:10.1186/1471-2105-6-129

    Article  PubMed  PubMed Central  Google Scholar 

  27. Soch J, Haynes JD, Allefeld C (2016) How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection. NeuroImage 141:469–489 doi:10.1016/j.neuroimage.2016.07.047

    Article  PubMed  Google Scholar 

  28. Matas M, Picornell A, Cifuentes C et al (2013) Generalized Linear Model (GLM) framework for the association of host variables and viral strains with liver fibrosis in HCV/HIV coinfected patients. Infect Genet Evol 13:284–291 doi:10.1016/j.meegid.2012.10.020

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Beijing Natural Science Foundation (No. 7174295) and the National Natural Science Foundation of China (No. 81601452).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Liu, Yinyan Wang or Tao Jiang.

Additional information

Yiming Li and Zenghui Qian contributed equally to this work and they are both the first authors of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 Flow diagram of the inclusion and exclusion criteria. (TIF 3471 KB)

11060_2017_2576_MOESM2_ESM.tif

Supplementary Fig. 2 Magnetic resonance images of two patients with lower glioma with different Ki-67 expression levels. Case 1 was that of a 25-year-old woman with low Ki-67 expression level, who was correctly classified into the low Ki-67 group on basis of the radiomic signature. Case 2 was that of a 39-year-old man with high Ki-67 expression level, who was correctly classified into the high Ki-67 group. (TIF 3856 KB)

Supplementary material 3 (DOCX 15 KB)

Supplementary material 4 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Qian, Z., Xu, K. et al. Radiomic features predict Ki-67 expression level and survival in lower grade gliomas. J Neurooncol 135, 317–324 (2017). https://doi.org/10.1007/s11060-017-2576-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2576-8

Keywords

Navigation