Skip to main content

Advertisement

Log in

Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Although genome-wide association studies have identified several susceptibility loci for adult glioma, little is known regarding the potential contribution of genetic variation in the human leukocyte antigen (HLA) region to glioma risk. HLA associations have been reported for various malignancies, with many studies investigating selected candidate HLA polymorphisms. However, no systematic analysis has been conducted in glioma patients, and no investigation into potential non-additive effects has been described. We conducted comprehensive genetic analyses of HLA variants among 1746 adult glioma patients and 2312 controls of European-ancestry from the GliomaScan Consortium. Genotype data were generated with the Illumina 660-Quad array, and we imputed HLA alleles using a reference panel of 5225 individuals in the Type 1 Diabetes Genetics Consortium who underwent high-resolution HLA typing via next-generation sequencing. Case-control comparisons were adjusted for population stratification using ancestry-informative principal components. Because alleles in different loci across the HLA region are linked, we created multigene haplotypes consisting of the genes DRB1, DQA1, and DQB1. Although none of the haplotypes were associated with glioma in additive models, inclusion of a dominance term significantly improved the model for multigene haplotype HLA-DRB1*1501-DQA1*0102-DQB1*0602 (P = 0.002). Heterozygous carriers of the haplotype had an increased risk of glioma [odds ratio (OR) 1.23; 95% confidence interval (CI) 1.01–1.49], while homozygous carriers were at decreased risk compared with non-carriers (OR 0.64; 95% CI 0.40–1.01). Our results suggest that the DRB1*1501-DQA1*0102-DQB1*0602 haplotype may contribute to the risk of glioma in a non-additive manner, with the positive dominance effect partly explained by an epistatic interaction with HLA-DRB1*0401-DQA1*0301-DQB1*0301.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Farah P et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-Oncology 15:ii1–ii56. doi:10.1093/neuonc/not151

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ostrom QT, Bauchet L, Davis FG et al (2014) The epidemiology of glioma in adults: a state of the science review. Neuro-Oncology 16:896–913. doi:10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wiemels JL, Wilson D, Patel C et al (2009) IgE, allergy, and risk of glioma: update from the san francisco bay area adult glioma study in the Temozolomide Era. Int J Cancer J Int Cancer 125:680–687. doi:10.1002/ijc.24369

    Article  CAS  Google Scholar 

  4. Amirian ES, Zhou R, Wrensch MR et al (2016) Approaching a scientific consensus on the association between allergies and glioma risk: a report from the glioma international case-control study. Cancer Epidemiol Biomark 25:282–290. doi:10.1158/1055-9965.EPI-15-0847

    Article  CAS  Google Scholar 

  5. Egeberg A, Hansen PR, Gislason GH, Thyssen JP (2016) Association of rosacea with risk for glioma in a Danish Nationwide Cohort Study. JAMA Dermatol 152:541–545. doi:10.1001/jamadermatol.2015.5549

    Article  PubMed  Google Scholar 

  6. Brenner AV, Linet MS, Fine HA et al (2002) History of allergies and autoimmune diseases and risk of brain tumors in adults. Int J Cancer 99:252–259. doi:10.1002/ijc.10320

    Article  CAS  PubMed  Google Scholar 

  7. Hinds DA, McMahon G, Kiefer AK et al (2013) A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nat Genet 45:907–911. doi:10.1038/ng.2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang ALS, Raber I, Xu J et al (2015) Assessment of the genetic basis of rosacea by genome-wide association study. J Invest Dermatol 135:1548–1555. doi:10.1038/jid.2015.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trowsdale J, Knight JC (2013) Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet 14:301–323. doi:10.1146/annurev-genom-091212-153455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bateman AC, Howell WM (1999) Human leukocyte antigens and cancer: is it in our genes? J Pathol 188:231–236. doi:10.1002/(SICI)1096-9896(199907)188:3

    Article  CAS  PubMed  Google Scholar 

  11. Walsh KM, Codd V, Smirnov IV et al (2014) Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet 46:731–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Melin BS, Barnholtz-Sloan JS, Wrensch MR et al (2017) Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet 49:789–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajaraman P, Melin BS, Wang Z et al (2012) Genome-wide association study of glioma and meta-analysis. Hum Genet 131:1877–1888. doi:10.1007/s00439-012-1212-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lenz TL, Deutsch AJ, Han B et al (2015) Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 47:1085–1090. doi:10.1038/ng.3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Goyette P, Boucher G, Mallon D et al (2015) High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat Genet 47:172–179. doi:10.1038/ng.3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. The International Multiple Sclerosis Genetics Consortium (2015) Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet 47:1107–1113

    Article  Google Scholar 

  17. Guerini FR, Agliardi C, Zanzottera M et al (2005) Human leukocyte antigen distribution analysis in North Italian brain glioma patients:an association with HLA-DRB1*14. J Neurooncol 77:213–217. doi:10.1007/s11060-005-9032-x

    Article  PubMed  Google Scholar 

  18. Machulla HKG, Steinborn F, Schaaf A et al (2001) Brain glioma and human leukocyte antigens (HLA)—is there an association. J Neurooncol 52:253–261. doi:10.1023/A:1010612327647

    Article  CAS  PubMed  Google Scholar 

  19. La Torre D, Maugeri R, Angileri FF et al (2009) Human leukocyte antigen frequency in human high-grade gliomas: a case-control study in Sicily. Neurosurgery 64:1082–1088; Discussion 1088–1089. doi:10.1227/01.NEU.0000345946.35786.92

    Article  PubMed  Google Scholar 

  20. Tang J, Shao W, Dorak MT et al (2005) Positive and negative associations of human leukocyte antigen variants with the onset and prognosis of adult glioblastoma multiforme. Cancer Epidemiol Biomark Amp Prev 14:2040. doi:10.1158/1055-9965.EPI-05-0136

    Article  CAS  Google Scholar 

  21. Song W, Ruder AM, Hu L et al (2009) Genetic epidemiology of glioblastoma multiforme: confirmatory and new findings from analyses of human leukocyte antigen alleles and motifs. PLoS ONE 4:e7157. doi:10.1371/journal.pone.0007157

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bassig BA, Inskip PD, Burdette L et al (2011) Selected human leukocyte antigen class II polymorphisms and risk of adult glioma. J Neuroimmunol 233:185–191. doi:10.1016/j.jneuroim.2010.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Guja C, Guja L, Nutland S et al (2004) Type 1 diabetes genetic susceptibility encoded by HLA DQB1 genes in Romania. J Cell Mol Med 8:249–256

    Article  CAS  PubMed  Google Scholar 

  24. Laaksonen M, Pastinen T, Sjoroos M et al (2002) HLA class II associated risk and protection against multiple sclerosis-a Finnish family study. J Neuroimmunol 122:140–145

    Article  CAS  PubMed  Google Scholar 

  25. Jia X, Han B, Onengut-Gumuscu S et al (2013) Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8:e64683. doi:10.1371/journal.pone.0064683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rich SS, Concannon P, Erlich H et al (2006) The type 1 diabetes genetics consortium. Ann N Y Acad Sci 1079:1–8. doi:10.1196/annals.1375.001

    Article  CAS  PubMed  Google Scholar 

  27. Chang CC, Chow CC, Tellier LC et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7. doi:10.1186/s13742-015-0047-8

    Article  PubMed  PubMed Central  Google Scholar 

  28. Price AL, Patterson NJ, Plenge RM et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. doi:10.1038/ng1847

    Article  CAS  PubMed  Google Scholar 

  29. Whitacre CC (2001) Sex differences in autoimmune disease. Nat Immunol 2:777–780. doi:10.1038/ni0901-777

    Article  CAS  PubMed  Google Scholar 

  30. Jenkins RB, Xiao Y, Sicotte H et al (2012) A low-frequency variant at 8q24.21 is strongly associated with risk of oligodendroglial tumors and astrocytomas with IDH1 or IDH2 mutation. Nat Genet 44:1122–1125. doi:10.1038/ng.2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grier JT, Batchelor T (2006) Low-grade gliomas in adults. Oncologist 11:681–693. doi:10.1634/theoncologist.11-6-681

    Article  PubMed  Google Scholar 

  32. Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. New Engl J Med 372:2499–2508. doi:10.1056/NEJMoa1407279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Traherne JA (2008) Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet 35:179–192. doi:10.1111/j.1744-313X.2008.00765.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mignot E, Lin L, Rogers W et al (2001) Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet 68:686–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernando MMA, Stevens CR, Sabeti PC et al (2007) Identification of two independent risk factors for lupus within the MHC in United Kingdom Families. PLoS Genet 3:e192. doi:10.1371/journal.pgen.0030192

    Article  PubMed  PubMed Central  Google Scholar 

  36. Erlich H, Valdes AM, Noble J et al (2008) HLA DR-dq haplotypes and genotypes and type 1 diabetes risk. Diabetes 57:1084. doi:10.2337/db07-1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt H, Williamson D, Ashley-Koch A (2007) HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 165:1097–1109. doi:10.1093/aje/kwk118

    Article  PubMed  Google Scholar 

  38. Hildesheim A, Schiffman M, Scott DR et al (1998) Human leukocyte antigen class I/II alleles and development of human papillomavirus-related cervical neoplasia: results from a case-control study conducted in the United States. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol 7:1035–1041

    CAS  Google Scholar 

  39. Dziurzynski K, Chang SM, Heimberger AB et al (2012) Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-Oncol 14:246–255. doi:10.1093/neuonc/nor227

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amirian ES, Scheurer ME, Zhou R et al (2016) History of chickenpox in glioma risk: a report from the glioma international case–control study (GICC). Cancer Med 5:1352–1358. doi:10.1002/cam4.682

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rose AM, Bell LCK (2012) Epistasis and immunity: the role of genetic interactions in autoimmune diseases. Immunology 137:131–138. doi:10.1111/j.1365-2567.2012.03623.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wiemels JL, Wiencke JK, Sison JD et al (2002) History of allergies among adults with glioma and controls. Int J Cancer 98:609–615. doi:10.1002/ijc.10239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The results published here are, in part, based upon data obtained from dbGaP Study Accession phs000652.v1.p1: “Cohort-based Genome-Wide Association Study of Glioma (GliomaScan)” which was supported by intramural funds from the NCI and federal funds from the NCI under Contract N01-CO-12400. The authors additionally acknowledge use of the British 1958 Birth Cohort DNA collection, funded by the Medical Research Council Grant G0000934 and the Wellcome Trust Grant 068545/Z/02. This research uses resources provided by the Type 1 Diabetes Genetics Consortium (T1DGC); a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK); National Institute of Allergy and Infectious Diseases (NIAID); National Human Genome Research Institute (NHGRI); National Institute of Child Health and Human Development; Juvenile Diabetes Research Foundation International (JDRF), supported by U01 DK062418.

Funding

This work was supported by the National Institutes of Health T32CA151022-06 (C.Z.), R25T CA112355 (J.S.W.), and The Sontag Foundation (K.M.W.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., de Smith, A.J., Smirnov, I.V. et al. Non-additive and epistatic effects of HLA polymorphisms contributing to risk of adult glioma. J Neurooncol 135, 237–244 (2017). https://doi.org/10.1007/s11060-017-2569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2569-7

Keywords

Navigation