Skip to main content

Advertisement

Log in

Combination treatment with fasudil and clioquinol produces synergistic anti-tumor effects in U87 glioblastoma cells by activating apoptosis and autophagy

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Survival of patients with glioblastoma (GBM) remains poor, and novel treatment methods are urgently needed. In this study, we tested the effects of a combination of fasudil, a ROCK inhibitor, and clioquinol, an 8-hydroxyquinoline derivative with antimicrobial properties, on human GBM U87 cells. Combination treatment synergistically inhibited the viability of glioma cells but not mouse normal neuron HT22 cells and significantly induced mitochondria-mediated apoptosis. Moreover, the combination was also found to trigger macro-autophagy (henceforth referred to as autophagy) by increasing the expression levels of several proteins involved in the induction of autophagy. Further studies showed that 3-methyladenine (3-MA) or chloroquine (CQ), two autophagy inhibitors, abrogated the cytotoxic effects of the combination treatment as well as the autophagy. Overall, we demonstrated that fasudil and clioquinol show synergistic anti-cancer effects, providing evidence for the further development of combination therapy for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dolecek TA, Propp JM, Stroup NE, Kruchko C (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005-2009. Neuro Oncol 14(Suppl 5):v1–v49. doi:10.1093/neuonc/nos218

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chong CR, Sullivan DJ Jr (2007) New uses for old drugs. Nature 448:645–646. doi:10.1038/448645a

    Article  CAS  PubMed  Google Scholar 

  3. Jiang P, Mukthavaram R, Chao Y, Bharati IS, Fogal V, Pastorino S, Cong X, Nomura N, Gallagher M, Abbasi T, Vali S, Pingle SC, Makale M, Kesari S (2014) Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med 12:13. doi:10.1186/1479-5876-12-13

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ehrenreiter K, Kern F, Velamoor V, Meissl K, Galabova-Kovacs G, Sibilia M, Baccarini M (2009) Raf-1 addiction in Ras-induced skin carcinogenesis. Cancer Cell 16:149–160. doi:10.1016/j.ccr.2009.06.008

    Article  CAS  PubMed  Google Scholar 

  5. Chen M, Liu A, Ouyang Y, Huang Y, Chao X, Pi R (2013) Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert Opin Investig Drugs 22:537–550. doi:10.1517/13543784.2013.778242

    Article  CAS  PubMed  Google Scholar 

  6. Deng L, Li G, Li R, Liu Q, He Q, Zhang J (2010) Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer Biol Ther 9:875–884

    Article  CAS  PubMed  Google Scholar 

  7. Yang X, Di J, Zhang Y, Zhang S, Lu J, Liu J, Shi W (2012) The Rho-kinase inhibitor inhibits proliferation and metastasis of small cell lung cancer. Biomed Pharmacother 66:221–227. doi:10.1016/j.biopha.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  8. Ohta T, Takahashi T, Shibuya T, Amita M, Henmi N, Takahashi K, Kurachi H (2012) Inhibition of the Rho/ROCK pathway enhances the efficacy of cisplatin through the blockage of hypoxia-inducible factor-1alpha in human ovarian cancer cells. Cancer Biol Ther 13:25–33. doi:10.4161/cbt.13.1.18440

    Article  CAS  PubMed  Google Scholar 

  9. Iorio F, Isacchi A, di Bernardo D, Brunetti-Pierri N (2010) Identification of small molecules enhancing autophagic function from drug network analysis. Autophagy 6:1204–1205. doi:10.4161/auto.6.8.13551

    Article  CAS  PubMed  Google Scholar 

  10. Cahoon L (2009) The curious case of clioquinol. Nat Med 15:356–359. doi:10.1038/nm0409-356

    Article  CAS  PubMed  Google Scholar 

  11. Tateishi J (2000) Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals. Neuropathology 20(Suppl):S20–S24

    Article  PubMed  Google Scholar 

  12. Gilland O (1984) A neurological evaluation of purported cases of SMON in Sweden. Acta Neurol Scand Suppl 100:165–169

    CAS  PubMed  Google Scholar 

  13. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE (2005) Anticancer activity of the antibiotic clioquinol. Cancer Res 65:3389–3395. doi:10.1158/0008-5472.can-04-3577

    Article  CAS  PubMed  Google Scholar 

  14. Fan C, Wang W, Zhao B, Zhang S, Miao J (2006) Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 14:3218–3222. doi:10.1016/j.bmc.2005.12.035

    Article  CAS  PubMed  Google Scholar 

  15. Park BC, Park SH, Paek SH, Park SY, Kwak MK, Choi HG, Yong CS, Yoo BK, Kim JA (2008) Chloroquine-induced nitric oxide increase and cell death is dependent on cellular GSH depletion in A172 human glioblastoma cells. Toxicol Lett 178:52–60. doi:10.1016/j.toxlet.2008.02.003

    Article  CAS  PubMed  Google Scholar 

  16. Yu H, Lou JR, Ding WQ (2010) Clioquinol independently targets NF-kappaB and lysosome pathways in human cancer cells. Anticancer Res 30:2087–2092

    CAS  PubMed  Google Scholar 

  17. Du T, Filiz G, Caragounis A, Crouch PJ, White AR (2008) Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages. J Pharmacol Exp Ther 324:360–367. doi:10.1124/jpet.107.130377

    Article  CAS  PubMed  Google Scholar 

  18. Chen D, Cui QC, Yang H, Barrea RA, Sarkar FH, Sheng S, Yan B, Reddy GP, Dou QP (2007) Clioquinol, a therapeutic agent for Alzheimer’s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Res 67:1636–1644. doi:10.1158/0008-5472.can-06-3546

    Article  CAS  PubMed  Google Scholar 

  19. Park MH, Lee SJ, Byun HR, Kim Y, Oh YJ, Koh JY, Hwang JJ (2011) Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore. Neurobiol Dis 42:242–251. doi:10.1016/j.nbd.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  20. Cao B, Li J, Zhou X, Juan J, Han K, Zhang Z, Kong Y, Wang J, Mao X (2014) Clioquinol induces pro-death autophagy in leukemia and myeloma cells by disrupting the mTOR signaling pathway. Sci Rep 4:5749. doi:10.1038/srep05749

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jo GH, Bogler O, Chwae YJ, Yoo H, Lee SH, Park JB, Kim YJ, Kim JH, Gwak HS (2014) Radiation-induced autophagy contributes to cell death and induces apoptosis partly in malignant glioma cells. Cancer Res Treat. doi:10.4143/crt.2013.159

    Google Scholar 

  22. Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58:621–681. doi:10.1124/pr.58.3.10

    Article  CAS  PubMed  Google Scholar 

  23. Kundu S, Kim TH, Yoon JH, Shin HS, Lee J, Jung JH, Kim HS (2014) Viriditoxin regulates apoptosis and autophagy via mitotic catastrophe and microtubule formation in human prostate cancer cells. Int J Oncol 45:2331–2340. doi:10.3892/ijo.2014.2659

    CAS  PubMed  Google Scholar 

  24. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534. doi:10.1038/sj.cdd.4401777

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Dong Y, Zeng X, Liang X, Li X, Tao W, Chen H, Jiang Y, Mei L, Feng SS (2014) The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials 35:1932–1943. doi:10.1016/j.biomaterials.2013.10.034

    Article  CAS  PubMed  Google Scholar 

  26. Vlahopoulos S, Critselis E, Voutsas IF, Perez SA, Moschovi M, Baxevanis CN, Chrousos GP (2014) New use for old drugs? Prospective targets of chloroquines in cancer therapy. Curr Drug Targets 15:843–851

    Article  CAS  PubMed  Google Scholar 

  27. Jose P, Sundar K, Anjali CH, Ravindran A (2014) Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drug. Cell Biochem Biophys. doi:10.1007/s12013-014-0242-8

    PubMed  Google Scholar 

  28. Li Y, Li PK, Roberts MJ, Arend RC, Samant RS, Buchsbaum DJ (2014) Multi-targeted therapy of cancer by niclosamide: a new application for an old drug. Cancer Lett 349:8–14. doi:10.1016/j.canlet.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burz C, Berindan-Neagoe I, Balacescu O, Irimie A (2009) Apoptosis in cancer: key molecular signaling pathways and therapy targets. Acta Oncol 48:811–821. doi:10.1080/02841860902974175

    Article  CAS  PubMed  Google Scholar 

  30. Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA 55:178–194

    PubMed  Google Scholar 

  31. Schmitt CA (2003) Senescence, apoptosis and therapy–cutting the lifelines of cancer. Nat Rev Cancer 3:286–295. doi:10.1038/nrc1044

    Article  CAS  PubMed  Google Scholar 

  32. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241. doi:10.1038/nrm2312

    Article  CAS  PubMed  Google Scholar 

  33. Cao B, Li J, Zhu J, Shen M, Han K, Zhang Z, Yu Y, Wang Y, Wu D, Chen S, Sun A, Tang X, Zhao Y, Qiao C, Hou T, Mao X (2013) The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J Biol Chem 288:34181–34189. doi:10.1074/jbc.M113.472563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takeba Y, Matsumoto N, Watanabe M, Takenoshita-Nakaya S, Ohta Y, Kumai T, Takagi M, Koizumi S, Asakura T, Otsubo T (2012) The Rho kinase inhibitor fasudil is involved in p53-mediated apoptosis in human hepatocellular carcinoma cells. Cancer Chemother Pharmacol 69:1545–1555. doi:10.1007/s00280-012-1862-6

    Article  CAS  PubMed  Google Scholar 

  35. Su M, Mei Y, Sinha S (2013) Role of the crosstalk between autophagy and apoptosis in cancer. J Oncol 2013:102735. doi:10.1155/2013/102735

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502. doi:10.1126/science.1096645

    Article  CAS  PubMed  Google Scholar 

  37. Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V, Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L, Berardi R, Cascinu S, Santoni G (2013) Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer 109:1040–1050. doi:10.1038/bjc.2013.420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang YH, Wu YL, Tashiro S, Onodera S, Ikejima T (2011) Reactive oxygen species contribute to oridonin-induced apoptosis and autophagy in human cervical carcinoma HeLa cells. Acta Pharmacol Sin 32:1266–1275. doi:10.1038/aps.2011.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Fundamental Research Funds for Guangdong Provincial Project of Science & Technology (No. 2014A020212096) and the Guangdong Natural Science Foundation (No. S2011010002638) to A. Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Liu.

Ethics declarations

Conflict of interest

None.

Additional information

Mingliang He, Ming Luo and Qingyu Liu these authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, M., Luo, M., Liu, Q. et al. Combination treatment with fasudil and clioquinol produces synergistic anti-tumor effects in U87 glioblastoma cells by activating apoptosis and autophagy. J Neurooncol 127, 261–270 (2016). https://doi.org/10.1007/s11060-015-2044-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-2044-2

Keywords

Navigation