Skip to main content

Advertisement

Log in

Involvement of CD9 and PDGFR in migration is evolutionarily conserved from Drosophila glia to human glioma

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Platelet-derived growth factor receptor (PDGFR) signaling plays an important role in the biology of malignant gliomas. To investigate mechanisms modulating PDGFR signaling in gliomagenesis, we employed a Drosophila glioma model and genetic screen to identify genes interacting with Pvr, the fly homolog of PDGFRs. Glial expression of constitutively activated Pvr (λPvr) led to glial over migration and lethality at late larval stage. Among 3316 dsRNA strains crossed against the tester strain, 128 genes shifted lethality to pupal stage, including tetraspanin 2A (tsp2A). In a second step knockdown of all Drosophila tetraspanins was investigated. Of all tetraspanin dsRNA strains only knockdown of tsp2A partially rescued the Pvr-induced phenotype. Human CD9 (TSPAN29/MRP-1), a close homolog of tsp2A, was found to be expressed in glioma cell lines A172 and U343MG as well as in the majority of glioblastoma samples (16/22, 73 %). Furthermore, in situ proximity ligation assay revealed close association of CD9 with PDGFR α and β. In U343MG cells, knockdown of CD9 blocked PDGF-BB stimulated migration. In conclusion, modulation of PDGFR signaling by CD9 is evolutionarily conserved from Drosophila glia to human glioma and plays a role in glia migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cancer Genome Atlas research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068. doi:10.1038/nature07385

    Article  Google Scholar 

  2. Nazarenko I, Hede SM, He X, Hedren A, Thompson J, Lindstrom MS, Nister M (2012) PDGF and PDGF receptors in glioma. Upsala J Med Sci 117:99–112. doi:10.3109/03009734.2012.665097

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas research Network (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. doi:10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ozawa T, Brennan CW, Wang L, Squatrito M, Sasayama T, Nakada M, Huse JT, Pedraza A, Utsuki S, Yasui Y, Tandon A, Fomchenko EI, Oka H, Levine RL, Fujii K, Ladanyi M, Holland EC (2010) PDGFRA gene rearrangements are frequent genetic events in PDGFRA-amplified glioblastomas. Genes Dev 24:2205–2218. doi:10.1101/gad.1972310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A, Holland E (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS One 4:e7752. doi:10.1371/journal.pone.0007752

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reardon DA, Desjardins A, Vredenburgh JJ, Herndon JE 2nd, Coan A, Gururangan S, Peters KB, McLendon R, Sathornsumetee S, Rich JN, Lipp ES, Janney D, Friedman HS (2012) Phase II study of Gleevec plus hydroxyurea in adults with progressive or recurrent low-grade glioma. Cancer 118:4759–4767. doi:10.1002/cncr.26541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sjoblom T, Boureux A, Ronnstrand L, Heldin CH, Ghysdael J, Ostman A (1999) Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF beta R fusion protein. Oncogene 18:7055–7062. doi:10.1038/sj.onc.1203190

    Article  CAS  PubMed  Google Scholar 

  8. Read RD, Cavenee WK, Furnari FB, Thomas JB (2009) A drosophila model for EGFR-Ras and PI3K-dependent human glioma. PLoS Genet 5:e1000374. doi:10.1371/journal.pgen.1000374

    Article  PubMed  PubMed Central  Google Scholar 

  9. Witte HT, Jeibmann A, Klambt C, Paulus W (2009) Modeling glioma growth and invasion in Drosophila melanogaster. Neoplasia 11:882–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piek E, Afrakhte M, Sampath K, van Zoelen EJ, Heldin CH, ten Dijke P (1999) Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells. J Cell Physiol 180:141–149. doi:10.1002/(SICI)1097-4652(199908)180:2<141:AID-JCP1>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  11. Piek E, Heldin CH, Ten Dijke P (1999) Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 13:2105–2124

    CAS  PubMed  Google Scholar 

  12. Hoch RV, Soriano P (2003) Roles of PDGF in animal development. Development 130:4769–4784. doi:10.1242/dev.00721

    Article  CAS  PubMed  Google Scholar 

  13. Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C (2008) Organization and function of the blood-brain barrier in Drosophila. J Neurosci 28:587–597. doi:10.1523/JNEUROSCI.4367-07.2008

    Article  CAS  PubMed  Google Scholar 

  14. Halter DA, Urban J, Rickert C, Ner SS, Ito K, Travers AA, Technau GM (1995) The homeobox gene repo is required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development 121:317–332

    CAS  PubMed  Google Scholar 

  15. Lee BP, Jones BW (2005) Transcriptional regulation of the Drosophila glial gene repo. Mech Dev 122:849–862. doi:10.1016/j.mod.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  16. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. doi:10.1007/s00401-007-0243-4

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mertsch S, Schurgers LJ, Weber K, Paulus W, Senner V (2009) Matrix gla protein (MGP): an overexpressed and migration-promoting mesenchymal component in glioblastoma. BMC Cancer 9:302. doi:10.1186/1471-2407-9-302

    Article  PubMed  PubMed Central  Google Scholar 

  18. Koos B, Paulsson J, Jarvius M, Sanchez BC, Wrede B, Mertsch S, Jeibmann A, Kruse A, Peters O, Wolff JE, Galla HJ, Soderberg O, Paulus W, Ostman A, Hasselblatt M (2009) Platelet-derived growth factor receptor expression and activation in choroid plexus tumors. Am J Pathol 175:1631–1637. doi:10.2353/ajpath.2009.081022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL, Ljosa V, Rueden C, Eliceiri KW, Carpenter AE (2011) Improved structure, function and compatibility for Cell Profiler: modular high-throughput image analysis software. Bioinformatics 27:1179–1180. doi:10.1093/bioinformatics/btr095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kawashima M, Doh-ura K, Mekada E, Fukui M, Iwaki T (2002) CD9 expression in solid non-neuroepithelial tumors and infiltrative astrocytic tumors. J Histochem Cytochem 50:1195–1203

    Article  CAS  PubMed  Google Scholar 

  21. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79:1283–1316

    CAS  PubMed  Google Scholar 

  22. Podbielska M, Banik NL, Kurowska E, Hogan EL (2013) Myelin recovery in multiple sclerosis: the challenge of remyelination. Brain Sci 3:1282–1324. doi:10.3390/brainsci3031282

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kanakaraj P, Raj S, Khan SA, Bishayee S (1991) Ligand-induced interaction between alpha- and beta-type platelet-derived growth factor (PDGF) receptors: role of receptor heterodimers in kinase activation. Biochemistry 30:1761–1767

    Article  CAS  PubMed  Google Scholar 

  24. Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM (2001) OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and β1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 153:295–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mela A, Goldman JE (2009) The tetraspanin KAI1/CD82 is expressed by late-lineage oligodendrocyte precursors and may function to restrict precursor migration and promote oligodendrocyte differentiation and myelination. J Neurosci 29:11172–11181. doi:10.1523/JNEUROSCI.3075-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anton ES, Hadjiargyrou M, Patterson PH, Matthew WD (1995) CD9 plays a role in Schwann cell migration in vitro. J Neurosci 15:584–595

    CAS  PubMed  Google Scholar 

  27. del Valle Rodriguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55. doi:10.1038/nmeth.1800

    Google Scholar 

  28. Brinck J, Heldin P (1999) Expression of recombinant hyaluronan synthase (HAS) isoforms in CHO cells reduces cell migration and cell surface CD44. Exp Cell Res 252:342–351. doi:10.1006/excr.1999.4645

    Article  CAS  PubMed  Google Scholar 

  29. Husmark J, Heldin NE, Nilsson M (1999) N-cadherin-mediated adhesion and aberrant catenin expression in anaplastic thyroid-carcinoma cell lines. Int J Cancer 83:692–699

    Article  CAS  PubMed  Google Scholar 

  30. Paulsson J, Lindh MB, Jarvius M, Puputti M, Nister M, Nupponen NN, Paulus W, Soderberg O, Dresemann G, von Deimling A, Joensuu H, Ostman A, Hasselblatt M (2011) Prognostic but not predictive role of platelet-derived growth factor receptors in patients with recurrent glioblastoma. Int J Cancer 128:1981–1988. doi:10.1002/ijc.25528

    Article  CAS  PubMed  Google Scholar 

  31. Heuchel R, Berg A, Tallquist M, Ahlen K, Reed RK, Rubin K, Claesson-Welsh L, Heldin CH, Soriano P (1999) Platelet-derived growth factor beta receptor regulates interstitial fluid homeostasis through phosphatidylinositol-3′ kinase signaling. Proc Natl Acad Sci USA 96:11410–11415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimizu A, O’Brien KP, Sjoblom T, Pietras K, Buchdunger E, Collins VP, Heldin CH, Dumanski JP, Ostman A (1999) The dermatofibrosarcoma protuberans-associated collagen type Iα1/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 59:3719–3723

    CAS  PubMed  Google Scholar 

  33. Heldin NE, Bergstrom D, Hermansson A, Bergenstrahle A, Nakao A, Westermark B, ten Dijke P (1999) Lack of responsiveness to TGF-beta1 in a thyroid carcinoma cell line with functional type I and type II TGF-beta receptors and Smad proteins, suggests a novel mechanism for TGF-beta insensitivity in carcinoma cells. Mol Cell Endocrinol 153:79–90

    Article  CAS  PubMed  Google Scholar 

  34. Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177:1231–1237

    Article  CAS  PubMed  Google Scholar 

  35. Takeda T, Hattori N, Tokuhara T, Nishimura Y, Yokoyama M, Miyake M (2007) Adenoviral transduction of MRP-1/CD9 and KAI1/CD82 inhibits lymph node metastasis in orthotopic lung cancer model. Cancer Res 67:1744–1749. doi:10.1158/0008-5472.CAN-06-3090

    Article  CAS  PubMed  Google Scholar 

  36. Saito Y, Tachibana I, Takeda Y, Yamane H, He P, Suzuki M, Minami S, Kijima T, Yoshida M, Kumagai T, Osaki T, Kawase I (2006) Absence of CD9 enhances adhesion-dependent morphologic differentiation, survival, and matrix metalloproteinase-2 production in small cell lung cancer cells. Cancer Res 66:9557–9565. doi:10.1158/0008-5472.CAN-06-1131

    Article  CAS  PubMed  Google Scholar 

  37. Murayama Y, Shinomura Y, Oritani K, Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T, Tsutsui S, Tamura S, Higashiyama S, Shimomura I, Hayashi N (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143. doi:10.1002/jcp.21384

    Article  CAS  PubMed  Google Scholar 

  38. Ronnstrand L, Siegbahn A, Rorsman C, Johnell M, Hansen K, Heldin CH (1999) Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis. J Biol Chem 274:22089–22094

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research was supported by DFG Grants (PA 328/7-1) and (Ko-4345/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Jeibmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeibmann, A., Halama, K., Witte, H.T. et al. Involvement of CD9 and PDGFR in migration is evolutionarily conserved from Drosophila glia to human glioma. J Neurooncol 124, 373–383 (2015). https://doi.org/10.1007/s11060-015-1864-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1864-4

Keywords

Navigation