Skip to main content

Advertisement

Log in

Re-defining response and treatment effects for neuro-oncology immunotherapy clinical trials

  • Editors' Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In much of medical oncology, including neuro-oncology, there is great interest to evaluate the therapeutic potential of immune-based therapies including vaccines, adoptive T cell strategies and modulators of immune checkpoint regulators such as cytotoxic T lymphocyte antigen 4 and programmed death 1. Immune-based treatments exert an indirect anti-tumor effect by generating potent, tumor-targeting immune responses. Robust anti-tumor immune responses have been shown to achieve encouraging radiographic responses across the spectrum of applied immunotherapeutics which are felt to be indicative of a bona fide anti-tumor effect. Conversely, worsening of imaging findings, particularly early in the course of immunotherapy administration, can be challenging to interpret with growing evidence demonstrating that at least a subset of such patients ultimately will derive meaningful clinical benefit. The immune related response criteria were generated to provide guidance regarding the interpretation of such complex imaging findings, for general medical oncologists prescribing immunotherapeutics. An analogous effort that addresses challenges associated with imaging assessment and incorporates nuances associated with neuro-oncology patients is underway and is referred to as the immunotherapy response assessment in neuro-oncology criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coley WB (1893) The treatment of malignant tumors by repeated inoculations of Erysipelas, with a report of ten original cases. Am J Med Sci 105:487–511

    Article  Google Scholar 

  2. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422

    Article  CAS  PubMed  Google Scholar 

  4. Reardon DA, Wucherpfennig KW, Freeman G et al (2013) An update on vaccine therapy and other immunotherapeutic approaches for glioblastoma. Expert Rev Vaccines 12:597–615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Wen PY, Reardon DA, Phuphanich S, et al (2014) A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients, 2014 American Society of Clinical Oncology Annual Meeting, ASCO, Chicago, IL

  6. Babu R, Adamson DC (2012) Rindopepimut: an evidence-based review of its therapeutic potential in the treatment of EGFRvIII-positive glioblastoma. Core Evid 7:93–103

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Reardon DA, Li G, Recht L, et al (2013) ReACT: a phase II study of rindopepimut vaccine (CDX-110) plus bevacizumab in relapsed glioblastoma (GBM), 4th Quadrennial Meeting of the World Federation of Neuro-Oncology/18th Annual Meeting of the Society for Neuro-Oncology. Oxford Press, San Francisco, CA

  8. Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology 16:274–279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25

    Article  PubMed  Google Scholar 

  12. Brentjens RJ, Davila ML, Riviere I et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra38

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kochenderfer JN, Dudley ME, Feldman SA et al (2012) B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 119:2709–2720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gilham DE, Debets R, Pule M et al (2012) CAR-T cells and solid tumors: tuning T cells to challenge an inveterate foe. Trends Mol Med 18:377–384

    Article  CAS  PubMed  Google Scholar 

  15. Ott PA, Hodi FS, Robert C (2013) CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 19:5300–5309

    Article  CAS  PubMed  Google Scholar 

  16. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19:1021–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  19. Prieto PA, Yang JC, Sherry RM et al (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res 18:2039–2047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384:1109–1117

    Article  CAS  PubMed  Google Scholar 

  21. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  CAS  PubMed  Google Scholar 

  24. Shurin MR (2013) Dual role of immunomodulation by anticancer chemotherapy. Nat Med 19:20–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Chinot OL, Macdonald DR, Abrey LE et al (2013) Response assessment criteria for glioblastoma: practical adaptation and implementation in clinical trials of antiangiogenic therapy. Curr Neurol Neurosci Rep 13:347

    Article  PubMed Central  PubMed  Google Scholar 

  27. Brandsma D, Stalpers L, Taal W et al (2008) Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol 9:453–461

    Article  PubMed  Google Scholar 

  28. Radbruch A, Fladt J, Kickingereder P et al (2015) Pseudoprogression in patients with glioblastoma: clinical relevance despite low incidence. Neuro-Oncol 17(1):151–159

  29. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  PubMed  Google Scholar 

  30. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  CAS  PubMed  Google Scholar 

  31. Little RF, Pluda JM, Wyvill KM et al (2006) Activity of subcutaneous interleukin-12 in AIDS-related Kaposi sarcoma. Blood 107:4650–4657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. van Baren N, Bonnet MC, Dreno B et al (2005) Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J Clin Oncol 23:9008–9021

    Article  PubMed  Google Scholar 

  33. Kruit WH, van Ojik HH, Brichard VG et al (2005) Phase 1/2 study of subcutaneous and intradermal immunization with a recombinant MAGE-3 protein in patients with detectable metastatic melanoma. Int J Cancer 117:596–604

    Article  CAS  PubMed  Google Scholar 

  34. Di Giacomo AM, Danielli R, Guidoboni M et al (2009) Therapeutic efficacy of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with metastatic melanoma unresponsive to prior systemic treatments: clinical and immunological evidence from three patient cases. Cancer Immunol Immunother 58:1297–1306

    Article  PubMed  Google Scholar 

  35. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32:1020–1030

    Article  CAS  PubMed  Google Scholar 

  37. Hodi FS, Lawrence D, Lezcano C et al (2014) Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2:632–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Okada H, Kalinski P, Ueda R et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kirkwood JM, Lorigan P, Hersey P et al (2010) Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 16:1042–1048

    Article  CAS  PubMed  Google Scholar 

  40. Hodi FS, Mihm MC, Soiffer RJ et al (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 100:4712–4717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pollack IF, Jakacki RI, Butterfield LH et al (2014) Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol 32:2050–2058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729

    Article  PubMed Central  PubMed  Google Scholar 

  43. Chiocca EA, Aguilar LK, Bell SD et al (2011) Phase IB study of gene-mediated cytotoxic immunotherapy adjuvant to up-front surgery and intensive timing radiation for malignant glioma. J Clin Oncol 29:3611–3619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Hoos A, Parmiani G, Hege K et al (2007) A clinical development paradigm for cancer vaccines and related biologics. J Immunother 30:1–15

    Article  PubMed  Google Scholar 

  46. Vrabec M, Van Cauter S, Himmelreich U et al (2011) MR perfusion and diffusion imaging in the follow-up of recurrent glioblastoma treated with dendritic cell immunotherapy: a pilot study. Neuroradiology 53:721–731

    Article  PubMed  Google Scholar 

  47. Stenberg L, Englund E, Wirestam R et al (2006) Dynamic susceptibility contrast-enhanced perfusion magnetic resonance (MR) imaging combined with contrast-enhanced MR imaging in the follow-up of immunogene-treated glioblastoma multiforme. Acta Radiol 47:852–861

    Article  CAS  PubMed  Google Scholar 

  48. Chiba Y, Kinoshita M, Okita Y et al (2012) Use of (11)C-methionine PET parametric response map for monitoring WT1 immunotherapy response in recurrent malignant glioma. J Neurosurg 116:835–842

    Article  CAS  PubMed  Google Scholar 

  49. Popperl G, Kreth FW, Herms J et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47:393–403

    PubMed  Google Scholar 

  50. Srinivasan R, Phillips JJ, Vandenberg SR et al (2010) Ex vivo MR spectroscopic measure differentiates tumor from treatment effects in GBM. Neuro-Oncology 12:1152–1161

    Article  PubMed Central  PubMed  Google Scholar 

  51. Smith EA, Carlos RC, Junck LR et al (2009) Developing a clinical decision model: MR spectroscopy to differentiate between recurrent tumor and radiation change in patients with new contrast-enhancing lesions. AJR 192:W45–W52

    Article  PubMed  Google Scholar 

  52. Boxerman JL, Ellingson BM, Jeyapalan S, et al (2014) Longitudinal DSC-MRI for distinguishing tumor recurrence from pseudoprogression in patients with a high-grade glioma. Am J Clin Oncol. doi:10.1097/COC.0000000000000156

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Reardon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reardon, D.A., Okada, H. Re-defining response and treatment effects for neuro-oncology immunotherapy clinical trials. J Neurooncol 123, 339–346 (2015). https://doi.org/10.1007/s11060-015-1748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1748-7

Keywords

Navigation