Skip to main content

Advertisement

Log in

Current challenges in designing GBM trials for immunotherapy

  • Editors' Invited Manuscript
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Immune system modulation is evolving into a promising treatment modality in glioblastoma. Our growing understanding of glioma immunobiology has fueled efforts to develop immunotherapeutic strategies to combat this lethal primary brain tumor. Autologous stimulated lymphocytes, immunotherapy with cytokines and dendritic cells, immune checkpoint inhibitors, virotherapy, and tumor or peptide based vaccines are immunotherapy approaches under active investigation. A number of challenges are evident in the design of immunotherapy clinical trials in glioblastoma including patient selection, immune and imaging response monitoring, and evaluation of clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  2. Gilbert MR et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Barker CF, Billingham RE (1977) Immunologically privileged sites. Adv Immunol 25:1–54

    Article  CAS  PubMed  Google Scholar 

  4. Jackson CM, Lim M, Drake CG (2014) Immunotherapy for brain cancer: recent progress and future promise. Clin Cancer Res 20(14):3651–3659

    Article  PubMed  Google Scholar 

  5. Fabry Z, Raine CS, Hart MN (1994) Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today 15(5):218–224

    Article  CAS  PubMed  Google Scholar 

  6. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28(1):12–18

    Article  CAS  PubMed  Google Scholar 

  7. Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12

    PubMed Central  PubMed  Google Scholar 

  8. Bullard DE et al (1986) Immunobiology of human gliomas. Semin Oncol 13(1):94–109

    CAS  PubMed  Google Scholar 

  9. Owens T et al (1994) Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol Today 15(12):566–571

    Article  CAS  PubMed  Google Scholar 

  10. Stevens A, Kloter I, Roggendorf W (1988) Inflammatory infiltrates and natural killer cell presence in human brain tumors. Cancer 61(4):738–743

    Article  CAS  PubMed  Google Scholar 

  11. Drake CG (2010) Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 10(8):580–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17(22):6958–6962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Brooks WH et al (1972) Depressed cell-mediated immunity in patients with primary intracranial tumors characterization of a humoral immunosuppressive factor. J Exp Med 136(6):1631–1647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wrann M et al (1987) T cell suppressor factor from human glioblastoma cells is a 12.5-kd protein closely related to transforming growth factor-beta. EMBO J 6(6):1633–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Munn DH, Mellor AL (2004) IDO and tolerance to tumors. Trends Mol Med 10(1):15–18

    Article  CAS  PubMed  Google Scholar 

  16. Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-beta in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52(4):401–410

    Article  CAS  PubMed  Google Scholar 

  17. Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12(10):370–374

    Article  CAS  PubMed  Google Scholar 

  18. Tada M et al (1993) Human glioblastoma cells produce 77 amino acid interleukin-8 (IL-8(77)). J Neurooncol 16(1):25–34

    Article  CAS  PubMed  Google Scholar 

  19. Charles NA et al (2011) The brain tumor microenvironment. Glia 59(8):1169–1180

    Article  PubMed  Google Scholar 

  20. Heimberger AB et al (2002) Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma. Neurosurgery 50(1):158–164 discussion 164–6

    PubMed  Google Scholar 

  21. Wheeler CJ et al (2004) Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res 10(16):5316–5326

    Article  CAS  PubMed  Google Scholar 

  22. Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979

    Article  CAS  PubMed  Google Scholar 

  23. Liau LM et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9(6):e8

    Article  CAS  PubMed  Google Scholar 

  24. Wong AJ et al (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89(7):2965–2969

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sampson JH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28(31):4722–4729

    Article  PubMed Central  PubMed  Google Scholar 

  26. Sampson JH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 13(3):324–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281

    Article  CAS  PubMed  Google Scholar 

  28. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  PubMed  Google Scholar 

  30. Lebbe C et al (2010) Ipilimumab improves survival in previously treated, advanced melanoma patients with poor prognostic factors: subgroup analysis from a phase III trial. Annu Oncol 21:401

    Google Scholar 

  31. Schartz NE et al (2010) Complete regression of a previously untreated melanoma brain metastasis with ipilimumab. Melanoma Res 20(3):247–250

    PubMed  Google Scholar 

  32. Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167

    Article  CAS  PubMed  Google Scholar 

  33. Grauer OM et al (2007) CD4+ FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121(1):95–105

    Article  CAS  PubMed  Google Scholar 

  34. Jiang H et al (2014) Delta-24-RGD oncolytic adenovirus elicits anti-glioma immunity in an immunocompetent mouse model. PLoS One 9(5):e97407

    Article  PubMed Central  PubMed  Google Scholar 

  35. Russell SJ, Peng KW, Bell JC (2012) Oncolytic virotherapy. Nat Biotechnol 30(7):658–670

    Article  CAS  PubMed  Google Scholar 

  36. Melcher A et al (2011) Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 19(6):1008–1016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fueyo J et al (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95(9):652–660

    Article  CAS  PubMed  Google Scholar 

  38. Jiang H et al (2007) Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 99(18):1410–1414

    Article  CAS  PubMed  Google Scholar 

  39. Jiang H et al (2011) Human adenovirus type 5 induces cell lysis through autophagy and autophagy-triggered caspase activity. J Virol 85(10):4720–4729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Li Y et al (2008) Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res 68(17):6889–6895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Uhl M et al (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ 16(7):991–1005

    Article  CAS  PubMed  Google Scholar 

  42. Heimberger AB, Sampson JH (2011) Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro Oncol 13(1):3–13

    Article  PubMed Central  PubMed  Google Scholar 

  43. Carro MS et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463(7279):318–325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Freije WA et al (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64(18):6503–6510

    Article  CAS  PubMed  Google Scholar 

  45. Murat A et al (2008) Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J Clin Oncol 26(18):3015–3024

    Article  CAS  PubMed  Google Scholar 

  46. Suntharalingam G et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355(10):1018–1028

    Article  CAS  PubMed  Google Scholar 

  47. Wen PY et al (2010) Response assessment challenges in clinical trials of gliomas. Curr Oncol Rep 12(1):68–75

    Article  PubMed  Google Scholar 

  48. Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697

    Article  CAS  PubMed  Google Scholar 

  49. Topalian SL et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030

    Article  CAS  PubMed  Google Scholar 

  50. Liao B et al (2014) Atypical neurological complications of ipilimumab therapy in patients with metastatic melanoma. Neuro Oncol 16(4):589–593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Wikstrand CJ, Bigner DD (1981) Hyperimmunization of non-human primates with BCG-CW and cultured human glioma-derived cells: production of reactive antisera and absence of EAE induction. J Neuroimmunol 1(3):249–260

    Article  CAS  PubMed  Google Scholar 

  52. Lammert A et al (2013) Hypophysitis caused by ipilimumab in cancer patients: hormone replacement or immunosuppressive therapy. Exp Clin Endocrinol Diabetes 121(10):581–587

    Article  CAS  PubMed  Google Scholar 

  53. Orgogozo JM et al (2003) Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 61(1):46–54

    Article  CAS  PubMed  Google Scholar 

  54. Zitvogel L et al (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39(1):74–88

    Article  CAS  PubMed  Google Scholar 

  55. Kroemer G et al (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiao-Pei Weathers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weathers, SP., Gilbert, M.R. Current challenges in designing GBM trials for immunotherapy. J Neurooncol 123, 331–337 (2015). https://doi.org/10.1007/s11060-015-1716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1716-2

Keywords

Navigation