Skip to main content

Advertisement

Log in

miR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Malignant gliomas are the most common and devastating primary brain tumors in adults. The rapid invasion of tumor cells into the adjacent normal brain tissues is a major cause of treatment failure, yet the mechanisms that regulate this process remain poorly understood. MicroRNAs have recently emerged as regulators of invasion and metastasis by acting on multiple signaling pathways. In this study, we found that miR-622 is significantly downregulated in glioma tissues and cell lines. Functional experiments showed that increased miR-622 expression reduced glioma cell invasion and migration, whereas decreased miR-622 expression enhanced cell invasion and migration. Moreover, activating transcription factor 2 (ATF2), an important transcription factor that regulate tumor invasion, was identified as a direct target of miR-622. Knockdown of ATF2 using small interefering RNA recapitulated the anti-invasive function of miR-622, whereas restoring the ATF2 expression attenuated the function of miR-622 in glioma cells. Furthermore, clinical data indicated that miR-622 and ATF2 were inversely expressed in glioma specimens. Our findings provide insight into the specific biological behavior of miR-622 in tumor invasion and migration. Targeting miR-622/ATF2 axis is a novel therapeutic approach for blocking glioma invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY (2003) Primary brain tumours in adults. Lancet 361:323–331

    Article  PubMed  Google Scholar 

  2. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  CAS  PubMed  Google Scholar 

  3. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, Treatment EOR, Grp CBT, Grp RO, N.C.I.C.C. Trials (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  5. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  7. MacFarlane LA, Murphy PR (2010) MicroRNA: biogenesis function and role in cancer. Curr Genomics 11:537–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Yang LQ, Li Q, Wang QX, Jiang Z, Zhang L (2012) Silencing of miRNA-218 promotes migration and invasion of breast cancer via Slit2-Robo1 pathway. Biomed Pharmacother 66:535–540

    Article  CAS  PubMed  Google Scholar 

  10. Kloosterman WP, Plasterk RHA (2006) The diverse functions of MicroRNAs in animal development and disease. Dev Cell 11:441–450

    Article  CAS  PubMed  Google Scholar 

  11. Delic S, Lottmann N, Stelzl A, Liesenberg F, Wolter M, Gotze S, Zapatka M, Shiio Y, Sabel MC, Felsberg J, Reifenberger G, Riemenschneider MJ (2014) MiR-328 promotes glioma cell invasion via SFRP1-dependent Wnt-signaling activation. Neuro Oncol 16:179–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wang XR, Luo H, Li HL, Cao L, Wang XF, Yan W, Wang YY, Zhang JX, Jiang T, Kang CS, Liu N, You YP (2013) Overexpressed let-7a inhibits glioma cell malignancy by directly targeting K-ras, independently of PTEN. Neuro Oncol 15:1491–1501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Yan-nan B, Zhao-yan Y, Li-xi L, Jiang Y, Qing-jie X, Yong Z (2014) MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN. Biochem Biophys Res Commun 443:802–807

    Article  PubMed  Google Scholar 

  14. Li S, Xu X, Hu Z, Wu J, Zhu Y, Chen H, Mao Y, Lin Y, Luo J, Zheng X, Xie L (2013) MicroRNA-490-5p inhibits proliferation of bladder cancer by targeting c-Fos. Biochem Biophys Res Commun 441:976–981

    Article  CAS  PubMed  Google Scholar 

  15. Wu H, Xiao Z, Wang K, Liu W, Hao Q (2013) MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem Biophys Res Commun 441:693–700

    Article  CAS  PubMed  Google Scholar 

  16. Ma Y, Qin H, Cui Y (2013) MiR-34a targets GAS1 to promote cell proliferation and inhibit apoptosis in papillary thyroid carcinoma via PI3K/Akt/Bad pathway. Biochem Biophys Res Commun 441:958–963

    Article  CAS  PubMed  Google Scholar 

  17. Deng J, Lei W, Fu JC, Zhang L, Li JH, Xiong JP (2014) Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun 443:789–795

    Article  CAS  PubMed  Google Scholar 

  18. Han Z, Yang Q, Liu B, Wu J, Li Y, Yang C, Jiang Y (2012) MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis 33:131–139

    Article  CAS  PubMed  Google Scholar 

  19. Guo XB, Jing CQ, Li LP, Zhang L, Shi YL, Wang JS, Liu JL, Li CS (2011) Down-regulation of miR-622 in gastric cancer promotes cellular invasion and tumor metastasis by targeting ING1 gene. World J Gastroenterol 17:1895–1902

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Lopez-Bergami P, Lau E, Ronai Z (2010) Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 10:65–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kim ES, Sohn YW, Moon A (2007) TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett 252:147–156

    Article  CAS  PubMed  Google Scholar 

  22. Song H, Ki SH, Kim SG, Moon A (2006) Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation induced by p38 in breast epithelial cells. Cancer Res 66:10487–10496

    Article  CAS  PubMed  Google Scholar 

  23. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  24. Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (2008) The role of ATF-2 in oncogenesis. BioEssays 30:314–327

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81201978, No. 81172389, No. 81200362, No. 81372709, No. 81272792), the Jiangsu Province’s Natural Science Foundation (BK2012483, BK2010580), the Program for Advanced Talents within Six Industries of Jiangsu Province (2012-WSN-019), the National High Technology Research and Development Program of China (863) (2012AA02A508), International Cooperation Program (2012DFA30470), the Jiangsu Province’s Key Provincial Talents Program (RC2011051), the Jiangsu Province’s Key Discipline of Medicine (XK201117), the Jiangsu Provincial Special Program of Medical Science (BL2012028), the Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, the Provincial Initiative Program for Excellency Disciplines, Jiangsu Province and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huibo Wang.

Additional information

Rui Zhang, Hui Luo, Shuai Wang, Zhengxin Chen and Lingyang Hua have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Luo, H., Wang, S. et al. miR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells. J Neurooncol 121, 63–72 (2015). https://doi.org/10.1007/s11060-014-1607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1607-y

Keywords

Navigation