Skip to main content
Log in

Raman molecular imaging of brain frozen tissue sections

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Raman spectroscopy provides a molecular signature of the region being studied. It is ideal for neurosurgical applications because it is non-destructive, label-free, not impacted by water concentration, and can map an entire region of tissue. The objective of this paper is to demonstrate the meaningful spatial molecular information provided by Raman spectroscopy for identification of regions of normal brain, necrosis, diffusely infiltrating glioma and solid glioblastoma (GBM). Five frozen section tissues (1 normal, 1 necrotic, 1 GBM, and 2 infiltrating glioma) were mapped in their entirety using a 300-µm-square step size. Smaller regions of interest were also mapped using a 25-µm step size. The relative concentrations of relevant biomolecules were mapped across all tissues and compared with adjacent hematoxylin and eosin-stained sections, allowing identification of normal, GBM, and necrotic regions. Raman peaks and peak ratios mapped included 1003, 1313, 1431, 1585, and 1659 cm−1. Tissue maps identified boundaries of grey and white matter, necrosis, GBM, and infiltrating tumor. Complementary information, including relative concentration of lipids, protein, nucleic acid, and hemoglobin, was presented in a manner which can be easily adapted for in vivo tissue mapping. Raman spectroscopy can successfully provide label-free imaging of tissue characteristics with high accuracy. It can be translated to a surgical or laboratory tool for rapid, non-destructive imaging of tumor margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO Classification of Tumours of the Central Nervous System, Fourth Edition

  2. Albert FK, Forsting M, Sartor K, Adams H-P, Kunze S (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34:45–61

    Article  PubMed  CAS  Google Scholar 

  3. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  PubMed  CAS  Google Scholar 

  4. Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S, Tihan T, VandenBerg S, McDermott MW, Berger MS (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345

    Article  PubMed  Google Scholar 

  5. Shaw EG, Berkey B, Coons SW, Bullard D, Brachman D, Buckner JC, Stelzer KJ, Barger GR, Brown PD, Gilbert MR, Mehta M (2008) Recurrence following neurosurgeon-determined gross-total resection of adult supratentorial low-grade glioma: results of a prospective clinical trial. J Neurosurg 109:835–841

    Article  PubMed  Google Scholar 

  6. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469

    Article  PubMed  CAS  Google Scholar 

  7. Burger PC, Heinz ER, Shibata T, Kleihues P (1988) Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 68:698–704

    Article  PubMed  CAS  Google Scholar 

  8. De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 30:2559–2565

    Article  PubMed  Google Scholar 

  9. Price SJ, Jena R, Burnet NG, Hutchinson PJ, Dean AF, Peña A, Pickard JD, Carpenter TA, Gillard JH (2006) Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. AJNR Am J Neuroradiol 27:1969–1974

    PubMed  CAS  Google Scholar 

  10. Kalkanis S, Kast R, Rosenblum M, Mikkelsen T, Yurgelevic S, Nelson K, Raghunathan A, Poisson L, Auner G (2014) Raman spectroscopy to distinguish grey matter, necrosis, and glioblastoma multiforme in frozen tissue sections. J Neurooncol 116:477–485

    Article  PubMed  CAS  Google Scholar 

  11. Amharref N, Beljebbar A, Dukic S, Venteo L, Schneider L, Pluot M, Manfait M (2007) Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging. Biochim Biophys Acta (BBA) Biomembr 1768:2605–2615

    Article  CAS  Google Scholar 

  12. Koljenovic S, Choo-Smith L, Bakker Schut T, Kros J, van den Berge H, Puppels G (2002) Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy. Lab Invest 82:1265–1277

    Article  PubMed  CAS  Google Scholar 

  13. Koljenovic S, Schut T, Vincent A, Kros J, Puppels G (2005) Detection of meningioma in dura mater by Raman spectroscopy. Anal Chem 77:7958–7965

    Article  PubMed  CAS  Google Scholar 

  14. Krafft C, Sobottka SB, Schackert G, Salzer R (2005) Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors. Analyst 130:1070–1077

    Article  PubMed  CAS  Google Scholar 

  15. Krafft C, Sobottka SB, Schackert G, Salzer R (2006) Raman and infrared spectroscopic mapping of human primary intracranial tumors: a comparative study. J Raman Spectrosc 37:367–375

    Article  CAS  Google Scholar 

  16. Krafft C, Kirsch M, Beleites C, Schackert G, Salzer R (2007) Methodology for fiber-optic Raman mapping and FTIR imaging of metastases in mouse brains. Anal Bioanal Chem 389:1122–1142

    Google Scholar 

  17. Kirsch M, Schackert G, Salzer R, Krafft C (2010) Raman spectroscopic imaging for in vivo detection of cerebral brain metastases. Anal Bioanal Chem 398:1707–1713

    Article  PubMed  CAS  Google Scholar 

  18. Bergner N, Bocklitz T, Romeike BFM, Reichart R, Kalff R, Krafft C, Popp J (2012) Identification of primary tumors of brain metastases by Raman imaging and support vector machines. Chemom Intell Lab Syst 117:224–232

    Article  CAS  Google Scholar 

  19. Phillips GR, Harris JM (1990) Polynomial filters for data sets with outlying or missing observations: application to charge-coupled-device-detected Raman spectra contaminated by cosmic rays. Anal Chem 62:2351–2357

    Article  CAS  Google Scholar 

  20. Mazet V, Carteret C, Brie D, Idier J, Humbert B (2005) Background removal from spectra by designing and minimising a non-quadratic cost function. Chemom Intell Lab Syst 76:121–133

    Article  CAS  Google Scholar 

  21. Eilers PHC (2003) A perfect smoother. Anal Chem 75:3631–3636

    Article  PubMed  CAS  Google Scholar 

  22. Bergner N, Romeike BFM, Reichart R, Kalff R, Krafft C, Popp J (2011) Raman and FTIR microspectroscopy for detection of brain metastasis. In: Ramanujam N, Popp J (eds) SPIE, Munich, pp 80870X–80876

  23. Beleites C, Geiger K, Kirsch M, Sobottka S, Schackert G, Salzer R (2011) Raman spectroscopic grading of astrocytoma tissues: using soft reference information. Anal Bioanal Chem 400:2801–2816

    Article  PubMed  CAS  Google Scholar 

  24. Krafft C, Miljanic S, Sobottka SB, Schackert G, Salzer R (2003) Near-infrared Raman spectroscopy to study the composition of human brain tissue and tumors. Proc SPIE-Int Soc Opt Eng 5141:230–236

    CAS  Google Scholar 

  25. Beljebbar A, Dukic S, Amharref N, Manfait M (2010) Ex vivo and in vivo diagnosis of C6 glioblastoma development by Raman spectroscopy coupled to a microprobe. Anal Bioanal Chem 398:477–487

    Article  PubMed  CAS  Google Scholar 

  26. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, West Sussex

    Google Scholar 

  27. Morell P, Quarles R (1999) Characteristic composition of myelin. In: Siegel GJAB, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia

    Google Scholar 

  28. Mizuno A, Kitajima H, Kawauchi K, Muraishi S, Ozaki Y (1994) Near-infrared Fourier transform Raman spectroscopic study of human brain tissues and tumours. J Raman Spectrosc 25:25–29

    Article  CAS  Google Scholar 

  29. Mizuno A, Hayashi T, Tashibu K, Maraishi S, Kawauchi K, Ozaki Y (1992) Near-infrared FT-Raman spectra of the rat brain tissues. Neurosci Lett 141:47–52

    Article  PubMed  CAS  Google Scholar 

  30. Ong CW, Shen ZX, He Y, Lee T, Tang SH (1999) Raman microspectroscopy of the brain tissues in the substantia nigra and MPTP-induced Parkinson’s disease. J Raman Spectrosc 30:91–96

    Article  CAS  Google Scholar 

  31. Koehler M, Machill S, Salzer R, Krafft C (2009) Characterization of lipid extracts from brain tissue and tumors using Raman spectroscopy and mass spectrometry. Anal Bioanal Chem 393:1513–1520

    Article  CAS  Google Scholar 

  32. Movasaghi Z, Rehman S, Rehman IU (2007) Raman spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  33. Sato H, Chiba H, Tashiro H, Ozaki Y (2001) Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5−, 720−, and 1,064-nm excitation. J Biomed Opt 6:366–370

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Funding

This work was partially funded by the Hermelin Brain Tumor Center at Henry Ford Hospital, the Smart Sensors and Integrated Microsystems Program at Wayne State University, and the Paul U. Strauss/TEAMS endowed chair position at Wayne State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven N. Kalkanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kast, R.E., Auner, G.W., Rosenblum, M.L. et al. Raman molecular imaging of brain frozen tissue sections. J Neurooncol 120, 55–62 (2014). https://doi.org/10.1007/s11060-014-1536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1536-9

Keywords

Navigation