Skip to main content
Log in

Relationship between survival and increased radiation dose to subventricular zone in glioblastoma is controversial

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

An Erratum to this article was published on 11 April 2014

Abstract

To test the hypothesis on prolonged survival in glioblastoma cases with increased subventricular zone (SVZ) radiation dose. Sixty glioblastoma cases were previously treated with adjuvant radiotherapy and Temozolamide. Ipsilateral, contralateral and bilateral SVZs were contoured and their doses were retrospectively evaluated. Median follow-up, progression free survival (PFS) and overall survival (OS) were 24.5, 8.5 and 19.3 months respectively. Log-rank tests showed a statistically significant correlation between contralateral SVZ (cSVZ) dose > 59.2 Gy (75th percentile) and poor median PFS (10.37 [95 % CI 8.37–13.53] vs 7.1 [95 % CI 3.5–8.97] months, p = 0.009). cSVZ dose > 59.2 Gy was associated with poor OS in the subgroup with subtotal resection/biopsy (HR: 4.83 [95 % CI 1.71–13.97], p = 0.004). High ipsilateral SVZ dose of > 62.25 Gy (75th percentile) was associated with poor PFS in both subgroups of high performance status (HR: 2.58 [95 % CI 1.03–6.05], p = 0.044) and SVZ without tumoral contact (HR: 10.57 [95 % CI 2.04–49], p = 0.008). The effect of high cSVZ dose on PFS lost its statistical significance in multivariate Cox regression analysis. We report contradictory results compared to previous publications. Changing the clinical practice based on retrospective studies which even do not indicate consistent results among each other will be dangerous. We need carefully designed prospective randomized studies to evaluate any impact of radiation to SVZ in glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Koshy M, Villano JL, Dolecek TA et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107:207–212

    Article  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

    Article  CAS  PubMed  Google Scholar 

  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  4. Oh J, Sahgal A, Sanghera P et al (2011) Glioblastoma: patterns of recurrence and efficacy of salvage treatments. Can J Neurol Sci 38:621–625

    PubMed  Google Scholar 

  5. Quiñones-Hinojosa A, Sanai N, Soriano-Navarro M et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434

    Article  PubMed  Google Scholar 

  6. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    CAS  PubMed  Google Scholar 

  7. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  PubMed  Google Scholar 

  8. Bao S, Wu Q, Li Z et al (2008) Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res 68:6043–6048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Cheng L, Wu Q, Huang Z et al (2011) L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30:800–813

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  CAS  PubMed  Google Scholar 

  11. Eramo A, Ricci-Vitiani L, Zeuner A et al (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241

    Article  CAS  PubMed  Google Scholar 

  12. Firat E, Gaedicke S, Tsurumi C et al (2010) Die Bedeutung der Mitotischen Katastrophe nach γ-Bestrahlung von Glioblastomstammzellen. Strahlenther Onkol 186(Suppl 1):116

    Google Scholar 

  13. Bexell D, Gunnarsson S, Nordquist J, Bengzon J (2007) Characterization of the subventricular zone neurogenic response to rat malignant brain tumors. Neuroscience 147:824–832

    Article  CAS  PubMed  Google Scholar 

  14. Mercapide J, Rappa G, Anzanello F, King J, Fodstad O, Lorico A (2010) Primary gene-engineered neural stem/progenitor cells demonstrate tumor-selective migration and antitumor effects in glioma. Int J Cancer 126:1206–1215

    CAS  PubMed  Google Scholar 

  15. Lim DA, Cha S, Mayo MC et al (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 9:424–429

    Article  PubMed Central  PubMed  Google Scholar 

  16. Adeberg S, König L, Bostel T et al (2013) Glioblastomrezidivmuster: radiologische Auswertung des Rezidivmusters von 608 Patienten in Bezug auf neuronale Stammzellen der subventrikulären Zone Adeberg. Strahlenther Onkol 189(Suppl 1):24–25

    Google Scholar 

  17. Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  18. Koshy M, Villano JL, Dolecek TA et al (2012) Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J Neurooncol 107:207–212

    Article  PubMed  Google Scholar 

  19. Evers P, Lee PP, DeMarco J et al (2010) Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer 10:384

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gupta T, Nair V, Paul SN et al (2012) Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma? J Neurooncol 109:195–203

    Article  PubMed  Google Scholar 

  21. Lee P, Eppinga W, Lagerwaard F et al (2013) Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys 86:609–615

    Article  PubMed  Google Scholar 

  22. Chen L, Guerrero-Cazares H, Ye X et al (2013) Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int J Radiat Oncol Biol Phys 86:616–622

    Article  PubMed Central  PubMed  Google Scholar 

  23. Slotman BJE, Eppinga WSC, de Haan PF, Lagerwaard J (2011) Is irradiation of potential cancer stem cell niches in the subventricular zones indicated in GBM? (abstr 1058). Int J Radiat Oncol Biol Phys 81(Suppl 1):184

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the study and reporting methodology complies with the current laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olgun Elicin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elicin, O., Inac, E., Uzel, E.K. et al. Relationship between survival and increased radiation dose to subventricular zone in glioblastoma is controversial. J Neurooncol 118, 413–419 (2014). https://doi.org/10.1007/s11060-014-1424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1424-3

Keywords

Navigation