Skip to main content

Advertisement

Log in

MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the functions of microRNA-9, which is a tissue-specific microRNA in central nervous system, in the vasculogenic mimicry (VM) of glioma cell lines in vitro and in vivo.Glioma cell lines U87MG, U251 and SHG44 were transfected with microRNA-9 mimic, microRNA-9 inhibitor or scramble sequences. The amount of microRNA-9 and Stathmin (STMN1) mRNA was determined by quantitative real-time PCR, and the protein expression of STMN1 was determined by western blot. Cell proliferation and apoptosis were assessed. The interactions between the 3′UTR of STMN1 and miR-9 was determined by luciferase reporter assay. The VM capacity in vitro was evaluated using VM formation assay, and the rescue experiment of STMN1 was carried out in U251 cells. The in vivo experiment was applied with animal models implanted with U87MG cells.MicroRNA-9 mimic transfection reduced proliferation and increased apoptosis in glioma cell lines (p < 0.05). MicroRNA-9 mimic up-regulated STMN1 mRNA levels but reduced its protein levels (p < 0.05), and luciferase activity of STMN1 was suppressed by microRNA-9 mimic transfection (p < 0.05). Furthermore, microRNA-9 mimic transfection suppressed tumor volume growth, as well as VM both in vitro and in vivo. The cell viability and microtube density were upregulated in U251 cells after STMN1 up-regulation (p < 0.05). STMN1 is a target of microRNA-9, and microRNA-9 could modulate cell proliferation, VM and tumor volume growth through controlling STMN1 expression. MicroRNA-9 and its targets may represent a novel panel of molecules for the development of glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rubin CI, Atweh GF (2004) The role of Stathmin in the regulation of the cell cycle. J Cell Biochem 93:242–250

    Article  PubMed  CAS  Google Scholar 

  2. Bhat KM, Setaluri V (2007) Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 13:2849–2854

    Article  PubMed  CAS  Google Scholar 

  3. Leibl S, Zigeuner R, Hutterer G et al (2008) EGFR expression in urothelial carcinoma of the upper urinary tract is associated with disease progression and metaplastic morphology. APMIS 116:27–32

    Article  PubMed  Google Scholar 

  4. Cassimeris L (2002) The oncoprotein 18/Stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14:18–24

    Article  PubMed  CAS  Google Scholar 

  5. Rana S, Maples PB, Senzer N et al (2008) Stathmin 1: a novel therapeutic target for anticancer activity. Expert Rev Anticancer Ther 8:1461–1470

    Article  PubMed  CAS  Google Scholar 

  6. Dong B, Mu L, Qin X et al (2012) Stathmin expression in glioma-derived microvascular endothelial cells: a novel therapeutic target. Oncol Rep 27:714–718

    PubMed  CAS  Google Scholar 

  7. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27:5848–5856

    Article  PubMed  CAS  Google Scholar 

  8. Omura N, Li CP, Li A, Hong SM et al (2008) Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 7:1146–1156

    Article  PubMed  CAS  Google Scholar 

  9. Bandres E, Agirre X, Bitarte N et al (2009) Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer 125:2737–2743

    Article  PubMed  CAS  Google Scholar 

  10. Hildebrandt MA, Gu J, Lin J et al (2010) Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 29:5724–5728

    Article  PubMed  CAS  Google Scholar 

  11. Krichevsky AM, King KS, Donachue CP et al (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281

    Article  PubMed  CAS  Google Scholar 

  12. Krichevsky AM, Sonntag KC, Isacson O et al (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864

    Article  PubMed  CAS  Google Scholar 

  13. Delaloy C, Gao FB (2010) A new role for microRNA-9 in human progenitor cells. Cell Cycle 15:2913–2914

    Article  Google Scholar 

  14. Delaloy C, Liu L, Lee JA et al (2010) MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell 4:323–335

    Article  Google Scholar 

  15. Shibata M, Kurokawa D, Nakao H et al (2008) MicroRNA-9 #odulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 41:10415–10421

    Article  Google Scholar 

  16. Li Y, Wang F, Lee JA et al (2006) MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Gene Dev 20:2793–2805

    Article  PubMed  CAS  Google Scholar 

  17. Otaegi G, Pollock A, Hong J et al (2011) MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci 3:809–818

    Article  Google Scholar 

  18. Bonev B, Pisco A, Papalopulu N (2011) MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 1:19–32

    Article  Google Scholar 

  19. Holmfeldt P, Sellin ME, Gullberg M (2009) Predominant regulators of tubulin monomer-polymer partitioning and their implication for cell polarization. Cell Mol Life Sci 66:3263–3276

    Article  PubMed  CAS  Google Scholar 

  20. Ingber D, Prusty D, Zhengqi S et al (1995) Cell shape, cytoskeletal mechanics and cell cycle control in angiogenesis. J Biomech 28:1471–1484

    Article  PubMed  CAS  Google Scholar 

  21. Petrovic V, Costa RH, Lau LF et al (2008) FoxM1 regulates growth factor-induced expression of kinase-interacting stathmin to promote cell cycle progression. J Biol Chem 283:453–460

    Article  PubMed  CAS  Google Scholar 

  22. Kouzu Y, Uzawa K, Koike H et al (2006) Overexpression of Stathmin in oral squamous-cell carcinoma: correlation with tumour progression and poor prognosis. Br J Cancer 94:717–723

    PubMed  CAS  Google Scholar 

  23. Yuan RH, YM J, Chen HL et al (2006) Stathmin overexpression cooperates with p53 mutation and osteopontin overexpression, and is associated with tumour progression, early recurrence, and poor prognosis in hepatocellular carcinoma. J Pathol 209:549–558

    Article  PubMed  CAS  Google Scholar 

  24. Ghosh R, Gu G, Tillman E et al (2007) Increased expression and differential phosphorylation of stathmin may promote prostate cancer progression. Prostate 67:1038–1052

    Article  PubMed  CAS  Google Scholar 

  25. Wang R, Dong K, Lin F et al (2007) Inhibiting proliferation and enhancing chemosensitivity to taxanes in osteosarcoma cells by RNA interference-mediated down- regulation of Stathmin expression. Mol Med 13:567–575

    Article  PubMed  CAS  Google Scholar 

  26. Alli E, Yang JM, Hait WN (2007) Silencing of Stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 26:1003–1012

    Article  PubMed  CAS  Google Scholar 

  27. Johnsen JI, Aurelio ON, Kwaja Z et al (2000) p53-mediated negative regulation of Stathmin/Op18 expression is associated with G2/M cell-cycle arrest. Int J Cancer 88:685–691

    Article  PubMed  CAS  Google Scholar 

  28. Ngo TT, Peng T, Liang XJ et al (2007) The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas. J Natl Cancer Inst 99:639–652

    Article  PubMed  CAS  Google Scholar 

  29. Liang XJ, Choi Y, Sackett DL et al (2008) Nitrosoureas inhibit the stathmin-mediated migration and invasion of malignant glioma cells. Cancer Res 68:5267–5272

    Article  PubMed  CAS  Google Scholar 

  30. Wong QW, Lung EW, Law PT et al (2008) MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin 1. Gastroenterology 135:257–269

    Article  PubMed  CAS  Google Scholar 

  31. Wang J, Gu Z, Ni P et al (2011) NF-kappaB P50/P65 hetero-dimer mediates differential regulation of CD166/ALCAM expression via interaction with micoRNA-9 after serum deprivation, providing evidence for a novel negative auto-regulatory loop. Nucleic Acids Res 15:6440–6455

    Article  Google Scholar 

  32. Myatt S, Wang J, Monteiro L et al (2010) Definition of microRNAs that repression expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70:367–377

    Article  PubMed  CAS  Google Scholar 

  33. Ma L, Young J, Prabhala H et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Mat cell Biol 3:247–256

    Google Scholar 

  34. Luo H, Zhang H, Zhang Z et al (2009) Down-regulated miR-9 and miR-433 in human gastric carcinoma. J Exp Clin Cancer Res 28:82

    Article  PubMed  Google Scholar 

  35. Wan H, Guo L, Liu T et al (2010) Regulation of the transcription factor NF-kB1 by micro RNA-9 in human gastric adenocarcinoma. Mole Cancer 9:16

    Article  Google Scholar 

  36. Laios A, O’Toole S, Flavin R et al (2008) Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mole Cancer 7:35

    Article  Google Scholar 

  37. Arora H, Qureshi R, Jin S et al (2011) miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFkappaB1. Exp Mole Med 5:298–304

    Article  Google Scholar 

  38. Nass D, Rosenwald S, Meiri E et al (2009) MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol 19:375–383

    Article  PubMed  CAS  Google Scholar 

  39. Jeon H, Sohn Y, Oh S et al (2011) ID4 Imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res 9:3410–3421

    Article  Google Scholar 

  40. Schraivogel D, Weimann L, Beier D et al (2011) CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBOJ 20:4309–4322

    Article  Google Scholar 

  41. Ben-Hamo R, Efroni S (2011) Gene expression and network-based analysis reveals a novel role for hsa-miR-9 and drug control over the p38 network in glioblastoma multiforme progression. Genome Med 3(11):77

    Article  PubMed  CAS  Google Scholar 

  42. Chao T, Zhang Y, Yan X et al (2008) Mir-9 regulates the expression of CBX7 in Human Glioma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 30:268–274

    PubMed  CAS  Google Scholar 

  43. Maniotis AJ, Folberg R, Hess A et al (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155:739–752

    Article  PubMed  CAS  Google Scholar 

  44. Folberg R, Maniotis AJ (2004) Vasculogenic mimicry. APMIS 112:508–525

    Article  PubMed  Google Scholar 

  45. Wang S, Yu L, Ling G et al (2012) Vasculogenic mimicry and its clinical significance in medulloblastoma. Cancer Biol Ther 5:341–348

    Google Scholar 

  46. Chen Y, Jing Z, Luo C et al (2012) Vasculogenic mimicry-potential target for glioma therapy: an in vitro and in vivo study. Med Oncol 29:324–331

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Shaohong Fang and Mr. Jiangtian Tian form Key Laboratory of Myocardial Ischemia Mechanism and Treatment Ministry, Harbin, China,  for technically support.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Mu, L., Han, X. et al. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression. J Neurooncol 115, 381–390 (2013). https://doi.org/10.1007/s11060-013-1245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1245-9

Keywords

Navigation