Skip to main content
Log in

Immediate post-operative brachytherapy prior to irradiation and temozolomide for newly diagnosed glioblastoma

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To determine whether immediate post-operative brachytherapy can be safely applied to newly diagnosed glioblastomas to retard tumor progression prior to initiation of external beam radiation therapy (EBRT) and temozolomide. Between 1996 and 2011, eleven patients underwent implantation of GliaSite (n = 9) or MammoSite (n = 2) at the time of surgical resection. Brachytherapy was carried out on post-operative day 2–3, with 45–60 Gy delivered to a 1 cm margin. All patients underwent subsequent standard radiation/temozolomide treatment 4–5 weeks post-irradiation. There were no wound related complications. Toxicity was observed in two patients (2/11 or 18 %), including one post-operative seizure and one case of cerebral edema that resolved after a course of steroid treatment. Immediate post-operative and pre-irradiation/temozolomide magnetic resonance imaging assessment was available for 9 of the 11 patients. Two of these nine patients (22 %) developed new regions of contrast enhancement prior to irradiation/temozolomide. This compares favorably to historical data where 53 % of patient suffer such tumor progression. While there was a trend toward improved 6 month progression free survival in the brachytherapy/temozolomide/radiation treated patients, the overall survival of these patients were comparable to historical controls. This case series demonstrates the safety of immediate post-operative brachytherapy when applied prior to EBRT and temozolomide in the treatment of newly diagnosed glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. New Engl J Med 359(5):492–507

    Article  PubMed  CAS  Google Scholar 

  2. Walker MD et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49(3):333–343

    Article  PubMed  CAS  Google Scholar 

  3. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New Engl J Med 352(10):987–996

    Article  PubMed  CAS  Google Scholar 

  4. Pennington C et al (2006) A pilot study of brain tumour growth between radiotherapy planning and delivery. Clin Oncol 18(2):104–108

    Article  CAS  Google Scholar 

  5. Pirzkall A et al (2009) Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol 11(6):842–852

    Article  PubMed  CAS  Google Scholar 

  6. Dempsey JF et al (1998) Dosimetric properties of a novel brachytherapy balloon applicator for the treatment of malignant brain-tumor resection-cavity margins. Int J Radiat Oncol Biol Phys 42(2):421–429

    Article  PubMed  CAS  Google Scholar 

  7. Edmundson GK et al (2002) Dosimetric characteristics of the MammoSite RTS, a new breast brachytherapy applicator. Int J Radiat Oncol Biol Phys 52(4):1132–1139

    Article  PubMed  Google Scholar 

  8. Tatter SB et al (2003) An inflatable balloon catheter and liquid 125I radiation source (GliaSite Radiation Therapy System) for treatment of recurrent malignant glioma: multicenter safety and feasibility trial. J Neurosurg 99(2):297–303

    Article  PubMed  Google Scholar 

  9. Gutin PH et al (1984) Brachytherapy of recurrent malignant brain tumors with removable high-activity iodine-125 sources. J Neurosurg 60(1):61–68

    Article  PubMed  CAS  Google Scholar 

  10. Gutin PH et al (1991) External irradiation followed by an interstitial high activity iodine-125 implant “boost” in the initial treatment of malignant gliomas: NCOG study 6G–82-2. Int J Radiat Oncol Biol Phys 21(3):601–606

    Article  PubMed  CAS  Google Scholar 

  11. Prados MD et al (1992) Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys 24(4):593–597

    Article  PubMed  CAS  Google Scholar 

  12. Leibel SA et al (1989) Survival and quality of life after interstitial implantation of removable high-activity iodine-125 sources for the treatment of patients with recurrent malignant gliomas. Int J Radiat Oncol Biol Phys 17(6):1129–1139

    Article  PubMed  CAS  Google Scholar 

  13. Scharfen CO et al (1992) High activity iodine-125 interstitial implant for gliomas. Int J Radiat Oncol Biol Phys 24(4):583–591

    Article  CAS  Google Scholar 

  14. Laperriere NJ et al (1998) Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 41(5):1005–1011

    Article  PubMed  CAS  Google Scholar 

  15. Gabayan AJ et al (2006) GliaSite brachytherapy for treatment of recurrent malignant gliomas: a retrospective multi-institutional analysis. Neurosurgery 58(4):701–709; discussion 701–709

    Article  PubMed  Google Scholar 

  16. Sanai N et al (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115(1):3–8

    Article  PubMed  Google Scholar 

  17. Lacroix M et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  PubMed  CAS  Google Scholar 

  18. Kesari S et al (2011) DNA damage response and repair: insights into strategies for radiation sensitization of gliomas. Future Oncol 7(11):1335–1346

    Article  PubMed  CAS  Google Scholar 

  19. Yoshimura J et al (2012) The effects of temozolomide delivered by prolonged intracerebral microinfusion against the rat brainstem GBM allograft model. Childs Nerv Syst 28(5):707–713

    Article  PubMed  Google Scholar 

  20. Kil WJ et al (2008) In vitro and in vivo radiosensitization induced by the DNA methylating agent temozolomide. Clin Cancer Res 14(3):931–938

    Article  PubMed  CAS  Google Scholar 

  21. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. British J Radiol 62(740):679–694

    Article  CAS  Google Scholar 

  22. Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972

    Article  PubMed  Google Scholar 

  23. Radiation Therapy Oncology Group: Cooperative Group Common Toxicity Criteria. February 20, 2013. Available from: http://www.rtog.org/ResearchAssociates/AdverseEventReporting/CooperativeGroupCommonToxicityCriteria.aspx

  24. Lamborn KR et al (2008) Progression-free survival: an important end point in evaluating therapy for recurrent high-grade gliomas. Neuro Oncol 10(2):162–170

    Article  Google Scholar 

  25. Curran WJ Jr et al (1993) Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst 85(9):704–710

    Article  PubMed  Google Scholar 

  26. Mehta MP et al (1994) Stereotactic radiosurgery for glioblastoma multiforme: report of a prospective study evaluating prognostic factors and analyzing long-term survival advantage. Int J Radiat Oncol Biol Phys 30(3):541–549

    Article  PubMed  CAS  Google Scholar 

  27. Shenouda G et al (1997) Radiosurgery and accelerated radiotherapy for patients with glioblastoma. Can J Neurol Sci 24(2):110–115

    PubMed  CAS  Google Scholar 

  28. Ballman KV et al (2007) The relationship between six-month progression-free survival and 12-month overall survival end points for phase II trials in patients with glioblastoma multiforme. Neuro Oncol 9(1):29–38

    Article  PubMed  CAS  Google Scholar 

  29. Combs SE et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23(34):8863–8869

    Article  PubMed  Google Scholar 

  30. Bristow RE et al (2002) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 20(5):1248–1259

    Article  PubMed  Google Scholar 

  31. Chen AM et al (2007) Phase I trial of gross total resection, permanent iodine-125 brachytherapy, and hyperfractionated radiotherapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 69(3):825–830

    Article  PubMed  CAS  Google Scholar 

  32. Koot RW et al (2000) Brachytherapy: results of two different therapy strategies for patients with primary glioblastoma multiforme. Cancer 88(12):2796–2802

    Article  PubMed  CAS  Google Scholar 

  33. Welsh J et al (2007) GliaSite brachytherapy boost as part of initial treatment of glioblastoma multiforme: a retrospective multi-institutional pilot study. Int J Radiat Oncol Biol Phys 68(1):159–165

    Article  PubMed  Google Scholar 

  34. Hegi ME et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10):997–1003

    Article  PubMed  CAS  Google Scholar 

  35. Noushmehr H et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522

    Article  PubMed  CAS  Google Scholar 

  36. Souhami L et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93–05 protocol. Int J Radiat Oncol Biol Phys 60(3):853–860

    Article  Google Scholar 

  37. Fulton DS et al (1992) Increasing radiation dose intensity using hyperfractionation in patients with malignant glioma. Final report of a prospective phase I-II dose response study. J Neurooncol 14(1):63–72

    Article  PubMed  CAS  Google Scholar 

  38. Lustig RA et al (2007) Imaging response in malignant glioma, RTOG 90–06. Am J Clin Oncol 30(1):32–37

    Article  PubMed  Google Scholar 

  39. Coughlin C et al (2000) Phase II, two-arm RTOG trial (94–11) of bischloroethyl-nitrosourea plus accelerated hyperfractionated radiotherapy (64.0 or 70.4 Gy) based on tumor volume (>20 or ≤20 cm (2), respectively) in the treatment of newly-diagnosed radiosurgery-ineligible glioblastoma multiforme patients. Int J Radiat Oncol Biol Phys 48(5):1351–1358

    Article  PubMed  CAS  Google Scholar 

  40. Tsien C et al (2009) Phase I three-dimensional conformal radiation dose escalation study in newly diagnosed glioblastoma: radiation Therapy Oncology Group Trial 98–03. Int J Radiat Oncol Biol Phys 73(3):699–708

    Article  PubMed  Google Scholar 

  41. Patel S et al (2000) Permanent iodine-125 interstitial implants for the treatment of recurrent glioblastoma multiforme. Neurosurgery 46(5):1123–1128; discussion 1128–1130

    Article  PubMed  CAS  Google Scholar 

  42. Larson DA et al (2004) Permanent iodine 125 brachytherapy in patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol 6(2):119–126

    Article  PubMed  Google Scholar 

  43. Selker RG et al (2002) The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, intersitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 51(2):345–355; discussion 355–357

    Google Scholar 

  44. Mclendon RE et al (2007) Tumor resection cavity administered iodine-131-labeled antitenascin 81C6 radioimmunotherapy in patients with malignant glioma: neuropathology aspects. Nucl Med Biol 34(4):405–413

    Google Scholar 

  45. Sneed PK et al (1996) Demonstration of brachytherapy boost dose-response relationships in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 35(1):37–44

    Google Scholar 

  46. Wen PY et al (1994) Long term results of stereotactic brachytherapy used in the initial treatment of patients with glioblastomas. Cancer 73(12):3029–3036

    Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clark C. Chen.

Additional information

J. Dawn Waters and Brent Rose have contributed equally as first authors.

Joshua Lawson and Clark C. Chen have contributed equally as senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, J.D., Rose, B., Gonda, D.D. et al. Immediate post-operative brachytherapy prior to irradiation and temozolomide for newly diagnosed glioblastoma. J Neurooncol 113, 467–477 (2013). https://doi.org/10.1007/s11060-013-1139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1139-x

Keywords

Navigation