Skip to main content

Advertisement

Log in

MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Meningiomas represent one of the most common types of primary intracranial tumours. However, the specific molecular mechanisms underlying their pathogenesis remain uncertain. Loss of chromosomes 22q, 1p, and 14q have been implicated in most meningiomas. Inactivation of the NF2 gene at 22q12 has been identified as an early event in their pathogenesis, whereas abnormalities of chromosome 14 have been reported in higher-grade as well as recurrent tumours. It has long been supposed that chromosome 14q32 contains a tumour suppressor gene. However, the identity of the potential 14q32 tumour suppressor remained elusive until the Maternally Expressed Gene 3 (MEG3) was recently suggested as an ideal candidate. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA (ncRNA). In meningiomas, loss of MEG3 expression, its genomic DNA deletion and degree of promoter methylation have been found to be associated with aggressive tumour growth. These findings indicate that MEG3 may have a significant role as a novel long noncoding RNA tumour suppressor in meningiomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cushing H (1922) The meningiomas (dural endotheliomas): their source and favored seats of origin. Brain 45:282–316

    Article  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classifcation of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  4. Perry ALD, Scheithauer BW, Budka H, von Deimling A (2007) Menigiomas. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, Lyon

    Google Scholar 

  5. Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL (1985) Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62:18–24

    Article  PubMed  CAS  Google Scholar 

  6. Yamasaki F, Yoshioka H, Hama S, Sugiyama K, Arita K, Kurisu K (2000) Recurrence of meningiomas. Cancer 89:1102–1110

    Article  PubMed  CAS  Google Scholar 

  7. Jaaskelainen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 26:461–469

    Article  PubMed  CAS  Google Scholar 

  8. Aghi M, Carter B, Cosgrove G, Ojemann R, Amin-Hanjani S, Martuza R, Curry WT Jr, Barker FG 2nd (2009) Long-term recurrence rates of atypical meningiomas after gross total resection with or without postoperative adjuvant radiation. Neurosurgery 64:56–60

    Article  PubMed  Google Scholar 

  9. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM Jr, Menon AG (1995) Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res 55:4696–4701

    PubMed  CAS  Google Scholar 

  10. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724

    Article  PubMed  CAS  Google Scholar 

  11. Menon AG, Rutter JL, von Sattel JP, Synder H, Murdoch C, Blumenfeld A, Martuza RL, von Deimling A, Gusella JF, Houseal TW (1997) Frequent loss of chromosome 14 in atypical and malignant meningioma: identification of a putative ‘tumor progression’ locus. Oncogene 14:611–616

    Article  PubMed  CAS  Google Scholar 

  12. Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Kleinschmidt-Demasters BK, Perry A (2001) Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60:628–636

    PubMed  CAS  Google Scholar 

  13. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally Expressed Gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70:2350–2358

    Article  PubMed  CAS  Google Scholar 

  14. Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5:211–220

    Article  PubMed  CAS  Google Scholar 

  15. Wylie AA, Murphy SK, Orton TC, Jirtle RL (2000) Novel imprinted DLK1/GTL2 domain on human chromosome 14 contains motifs that mimic those implicated in IGF2/H19 regulation. Genome Res 10:1711–1718

    Article  PubMed  CAS  Google Scholar 

  16. Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A (1998) The mouse Gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn 212:214–228

    Article  PubMed  CAS  Google Scholar 

  17. Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14:R121–R132

    Article  PubMed  CAS  Google Scholar 

  18. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88:5119–5126

    Article  PubMed  CAS  Google Scholar 

  19. Astuti D, Latif F, Wagner K, Gentle D, Cooper WN, Catchpoole D, Grundy R, Ferguson-Smith AC, Maher ER (2005) Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms’ tumour. Br J Cancer 92:1574–1580

    Article  PubMed  CAS  Google Scholar 

  20. Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90:2179–2186

    Article  PubMed  CAS  Google Scholar 

  21. Pantoja C, de Los Rios L, Matheu A, Antequera F, Serrano M (2005) Inactivation of imprinted genes induced by cellular stress and tumorigenesis. Cancer Res 65:26–33

    PubMed  CAS  Google Scholar 

  22. Benetatos L, Dasoula A, Hatzimichael E, Georgiou I, Syrrou M, Bourantas KL (2008) Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma. Clin Lymphoma Myeloma 8:171–175

    Article  PubMed  CAS  Google Scholar 

  23. Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, Georgiou I, Bourantas KL (2010) CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res 34:148–153

    Article  PubMed  CAS  Google Scholar 

  24. Zhang X, Rice K, Wang Y, Chen W, Zhoní Y, Nakayama Y, Zhou Y, Klibanski A (2010) Maternally Expressed Gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology 151:939–947

    Article  PubMed  CAS  Google Scholar 

  25. Hainaut P (1995) The tumor suppressor protein p53: a receptor to genotoxic stress that controls cell growth and survival. Curr Opin Oncol 7:76–82

    PubMed  CAS  Google Scholar 

  26. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  27. Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  PubMed  CAS  Google Scholar 

  28. Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  PubMed  CAS  Google Scholar 

  29. Joachim T, Ram Z, Rappaport ZH, Simon M, Schramm J, Wiestler OD, von Deimling A (2001) Comparative analysis of the NF2, TP53, PTEN, KRAS, NRAS and HRAS genes in sporadic and radiation-induced human meningiomas. Int J Cancer 94:218–221

    Article  PubMed  CAS  Google Scholar 

  30. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282:24731–24742

    Article  PubMed  CAS  Google Scholar 

  31. Oliner GD, Kinder KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80–83

    Article  PubMed  CAS  Google Scholar 

  32. Olson D, Marechal V, Momand J, Chen J, Romochi C, Levine AJ (1993) Identification and characterization of multiple mdm2 proteins and mdm2 p53 protein complexes. Oncogene 8:2353–2360

    PubMed  CAS  Google Scholar 

  33. Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-MDM2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  PubMed  CAS  Google Scholar 

  34. Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171

    Article  PubMed  CAS  Google Scholar 

  35. Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459

    Article  PubMed  CAS  Google Scholar 

  36. Mendrysa SM, O’Leary KA, McElwee MK, Michalowski J, Eisenman RN, Powell DA, Perry ME (2006) Tumor suppression and normal aging in mice with constitutively high p53 activity. Genes Dev 20:16–21

    Article  PubMed  CAS  Google Scholar 

  37. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  PubMed  CAS  Google Scholar 

  38. Marine JC, Francoz S, Maetens M, Wahl G, Lozano G (2006) Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ 13:927–934

    Article  PubMed  CAS  Google Scholar 

  39. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J (1996) Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 2:912–917

    Article  PubMed  CAS  Google Scholar 

  40. Bartel F, Taubert H, Harris LC (2002) Alternative and aberrant splicing of MDM2 mRNA in human cancer. Cancer Cell 2:9–15

    Article  PubMed  CAS  Google Scholar 

  41. Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW (2003) Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res 63:5703–5706

    PubMed  CAS  Google Scholar 

  42. Evans SC, Viswanathan M, Grier JD, Narayana M, El-Naggar AK, Lozano G (2001) An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 20:4041–4049

    Article  PubMed  CAS  Google Scholar 

  43. Dang J, Kuo ML, Eischen CM, Stepanova L, Sherr CJ, Roussel MF (2002) The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 62:1222–1230

    PubMed  CAS  Google Scholar 

  44. Brown DR, Thomas CA, Deb SP (1998) The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 17:2513–2525

    Article  PubMed  CAS  Google Scholar 

  45. Wang YC, Lin RK, Tan YH, Chen JT, Chen CY, Wang YC (2005) Wild-Type p53 Overexpression and Its Correlation With MDM2 and p14ARF Alterations: an Alternative Pathway to Non–Small-Cell Lung Cancer. J Clin Oncol 23:154–164

    Article  PubMed  Google Scholar 

  46. Onel K, Cordon-Cardo C (2004) MDM2 and prognosis. Mol Cancer Res 2:1–8

    PubMed  CAS  Google Scholar 

  47. Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 75:2227–2240

    Article  PubMed  CAS  Google Scholar 

  48. Li P-X, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC, Klamut HJ (2000) Placental transforming growth factor-b is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem 275:20127–20135

    Article  PubMed  CAS  Google Scholar 

  49. Albertoni M, Shaw PH, Nozaki M, Godard S, Tenan M, Hamou MF, Fairlie DW, Breit SN, Paralkar VM, de Tribolet N, Van Meir EG, Hegi ME (2002) Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastomas cells independently of p53 and HIF-1. Oncogene 21:4212–4219

    Article  PubMed  CAS  Google Scholar 

  50. Xing EP, Yang G-Y, Wang L-D, Shi ST, Yang CS (1999) Loss of heterozygosity of the Rb gene correlates with pRb protein expression and associates with p53 alteration in human esophageal cancer. Clin Cancer Res 5:1231–1240

    PubMed  CAS  Google Scholar 

  51. Jacks T, Weinberg RA (1998) The expanding role of cell cycle regulators. Science 280:1035–1036

    Article  PubMed  CAS  Google Scholar 

  52. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:323–330

    Article  PubMed  CAS  Google Scholar 

  53. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25:5220–5227

    Article  PubMed  CAS  Google Scholar 

  54. Lundberg AS, Weinberg RA (1998) Functional inactivation of the retinoblastoma protein requires sequential modification of retinoblastoma protein by at least two distinct cyclin-Cdk complexes. Mol Cell Biol 18:735–761

    Google Scholar 

  55. Sherr C (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  56. Mathivanan J, Rohini K, Gope ML, Anandh B, Gope R (2007) Altered structure and deregulated expression of the tumor suppressor gene retinoblastoma (RB1) in human brain tumors. Mol Cell Biochem 302:67–77

    Article  PubMed  CAS  Google Scholar 

  57. Ma D, Zhou P, Harbour JW (2003) Distinct mechanisms for regulating the tumor suppressor and antiapoptotic functions of Rb. J Biol Chem 278:19358–19366

    Article  PubMed  CAS  Google Scholar 

  58. Rassidakis GZ, Lai R, Herling M, Cromwell C, Schmitt-Graeff A, Medeiros LJ (2004) Retinoblastoma protein is frequently absent or phosphorylated in anaplastic large-cell lymphoma. Am J Pathol 164:2259–2267

    Article  PubMed  CAS  Google Scholar 

  59. Al-Khalaf HH, Lach B, Allam A, Hassounah M, Al-Khani A, Elkum N, Alrokayan SA, Aboussekhra A (2008) Expression of survivin and p16INK4a/Cdk6/pRB proteins and induction of apoptosis in response to radiation and cisplatin in meningioma cells. Brain Res 1188:25–34

    Article  PubMed  CAS  Google Scholar 

  60. Simon M, Park TW, Koster G, Mahlberg R, Hackenbroch M, Bostrom J, Loning T, Schramm J (2001) Alterations of INK4a(p16–p14ARF)/INK4b(p15) expression and telomerase activation in meningioma progression. J Neurooncol 55:149–158

    Article  PubMed  CAS  Google Scholar 

  61. Zhang X, Zhou Y, Klibanski A (2010) Isolation and characterization of novel pituitary tumor related genes: a cDNA representational difference approach. Mol Cell Endocrinol 326:40–47

    Article  PubMed  CAS  Google Scholar 

  62. Stork PJ, Schmitt JM (2002) Crosstalk between cAMP and MAPkinase signaling in the regulation of cell proliferation. Trends Cell Biol 12:258–266

    Article  PubMed  CAS  Google Scholar 

  63. Liu X, Ostrom RS, Insel PA (2004) cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. Am J Physiol Cell Physiol 286:C1089–C1099

    Article  PubMed  CAS  Google Scholar 

  64. Zhao J, Zhang X, Zhou Y, Ansell PJ, Klibanski A (2006) Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int J Biochem Cell Biol 38:1808–1820

    Article  PubMed  CAS  Google Scholar 

  65. Benetatos L, Vartholomatos G, Hatzimichael E (2011) MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer 129:773–779

    Article  PubMed  CAS  Google Scholar 

  66. Gordon FE, Nutt CL, Cheunsuchon P, Nakayama Y, Provencher KA, Rice KA, Zhou Y, Zhang X, Klibanski A (2010) Increased expression of angiogenic genes in the brains of mouse meg3-null embryos. Endocrinology 151:2443–2452

    Article  PubMed  CAS  Google Scholar 

  67. Cavaille J, Seitz H, Paulsen M, Ferguson-Smith AC, Bachellerie JP (2002) Identification of tandemly-repeated C/D snoRNA genes at the imprinted human 14q32 domain reminiscent of those at the Prader-Willi/Angelman syndrome region. Hum Mol Genet 11:1527–1538

    Article  PubMed  CAS  Google Scholar 

  68. Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M (2001) Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: dLK1, DAT, GTL2, PEG11, anti PEG11 and MEG8. Genome Res 11:850–862

    Article  PubMed  CAS  Google Scholar 

  69. Takada S, Paulsen M, Tevendale M, Tsai CE, Kelsey G, Cattanach BM, Ferguson-Smith AC (2002) Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome 12: implications for imprinting control from comparison with Igf2-H19. Hum Mol Genet 11:77–86

    Article  PubMed  CAS  Google Scholar 

  70. Lin SP, Youngson N, Takada S, Seitz H, Reik W, Paulsen M, Cavaille J, Ferguson-Smith AC (2003) Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 35:97–102

    Article  PubMed  CAS  Google Scholar 

  71. Miyazato A, Ueno S, Ohmine K, Ueda M, Yoshida K, Yamashita Y, Kaneko T, Mori M, Kirito K, Toshima M, Nakamura Y, Saito K, Kano Y, Furusawa S, Ozawa K, Mano H (2001) Identification of myelodysplastic syndrome-specific genes by DNA microarray analysis with purified hematopoietic stem cell fraction. Blood 98:422–427

    Article  PubMed  CAS  Google Scholar 

  72. Tsibris JC, Segars J, Coppola D, Mane S, Wilbanks GD, O’Brien WF, Spellacy WN (2002) Insights from gene arrays on the development and growth regulation of uterine leiomyomata. Fertil Steril 78:114–121

    Article  PubMed  Google Scholar 

  73. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA, Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Bützow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G (2008) Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA 105:7004–7009

    Article  PubMed  CAS  Google Scholar 

  74. Wang P, Ren Z, Sun P (2012) Overexpression of the Long Non-coding RNA MEG3 Impairs In vitro Glioma Cell Proliferation. J Cell Biochem 113:1868–1874

    Article  PubMed  CAS  Google Scholar 

  75. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2008) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93:4119–4125

    Article  PubMed  CAS  Google Scholar 

  76. Aypar U, Morgan WF, Baulch JE (2011) Radiation-induced epigenetic alterations after low and high LET irradiations. Mutat Res 707:24–33

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Balik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balik, V., Srovnal, J., Sulla, I. et al. MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol 112, 1–8 (2013). https://doi.org/10.1007/s11060-012-1038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-1038-6

Keywords

Navigation