Skip to main content
Log in

MicroRNA-107 inhibits glioma cell migration and invasion by modulating Notch2 expression

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs), small non-protein-coding RNA molecules, modulate target gene expression by binding to 3′untranslated regions (UTR) of target mRNA. These molecules are aberrantly expressed in many human cancers, and can function either as tumor suppressors or oncogenes. In the current study, we show that miR-107 is down-regulated in glioma tissues and cell lines, and its overexpression leads to inhibition of the migratory and invasive ability of glioma cells via direct targeting of Notch2, which is known to transactivate Tenascin-C and Cox-2. Experiments with Notch2 siRNA further suggest that miR-107 may exerts its anti-invasive activity through Notch2 signaling pathways. Our findings collectively indicate that miR-107 is involved in glioma cell migration and invasion, and support its utility as a potential target for glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507

    Article  PubMed  CAS  Google Scholar 

  2. See SJ, Gilbert MR (2004) Anaplastic astrocytoma: diagnosis, prognosis, and management. Semin Oncol 31:618–634

    Article  PubMed  Google Scholar 

  3. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA, Cavenee WK (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  5. Zamore PD, Haley B (2005) Ribo-gnome the big world of small RNAs. Science 309:1519–1524

    Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  7. Zhang B, Pan X, Cobb GP, Anderson TA (2007) microRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  PubMed  CAS  Google Scholar 

  8. Lee ST, Chu K, Oh HJ, Im WS, Lim JY, Kim SK, Park CK, Jung KH, Lee SK, Kim M, Roh JK (2010) Let-7 microRNA inhibits the proliferation of human glioblastoma cells. J Neurooncol 102:19–24

    Google Scholar 

  9. Xia H, Qi Y, Ng SS, Chen X, Li D, Chen S, Ge R, Jiang S, Li G, Chen Y, He ML, Kung HF, Lai L, Lin MC (2009) microRNA-146b inhibits glioma cell migration and invasion by targeting MMPs. Brain Res 1269:158–165

    Article  PubMed  CAS  Google Scholar 

  10. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A, Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6:14

    Article  PubMed  Google Scholar 

  11. Feng L, Xie Y, Zhang H, Wu Y (2011) miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med Oncol 29:586

    Google Scholar 

  12. Datta J, Smith A, Lang JC, Islam M, Dutt D, Teknos TN, Pan Q (2011) microRNA-107 functions as a candidate tumor-suppressor gene in head and neck squamous cell carcinoma by downregulation of protein kinase Cvarepsilon. Oncogene 31(36):4045–4053

    Google Scholar 

  13. Moncini S, Salvi A, Zuccotti P, Viero G, Quattrone A, Barlati S, De Petro G, Venturin M, Riva P (2011) The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. PLoS ONE 6:e20038

    Article  PubMed  CAS  Google Scholar 

  14. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  15. Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  16. Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107:2223–2233

    Article  PubMed  CAS  Google Scholar 

  17. Wu J, Bresnick EH (2007) Bare rudiments of notch signaling how receptor levels are regulated. Trends Biochem Sci 32:477–485

    Google Scholar 

  18. Asnaghi L, Ebrahimi KB, Schreck KC, Bar EE, Coonfield ML, Bell WR, Handa J, Merbs SL, Harbour JW, Eberhart CG (2012) Notch signaling promotes growth and invasion in uveal melanoma. Clin Cancer Res 18:654–665

    Article  PubMed  CAS  Google Scholar 

  19. Tseng YC, Tsai YH, Tseng MJ, Hsu KW, Yang MC, Huang KH, Li AF, Chi CW, Hsieh RH, Ku HH, Yeh TS (2011) Notch2-induced COX-2 expression enhancing gastric cancer progression. Mol Carcinog 51(12):939–951

    Google Scholar 

  20. Fan X, Mikolaenko I, Elhassan I, Ni X, Wang Y, Ball D, Brat DJ, Perry A, Eberhart CG (2004) Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 64:7787–7793

    Article  PubMed  CAS  Google Scholar 

  21. Boulay JL, Miserez AR, Zweifel C, Sivasankaran B, Kana V, Ghaffari A, Luyken C, Sabel M, Zerrouqi A, Wasner M, Van Meir E, Tolnay M, Reifenberger G, Merlo A (2007) Loss of NOTCH2 positively predicts survival in subgroups of human glial brain tumors. PLoS ONE 2:e576

    Article  PubMed  Google Scholar 

  22. Sivasankaran B, Degen M, Ghaffari A, Hegi ME, Hamou MF, Ionescu MC, Zweifel C, Tolnay M, Wasner M, Mergenthaler S, Miserez AR, Kiss R, Lino MM, Merlo A, Chiquet-Ehrismann R, Boulay JL (2009) Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res 69:458–465

    Article  PubMed  CAS  Google Scholar 

  23. Chen J, Kesari S, Rooney C, Strack PR, Chen J, Shen H, Wu L, Griffin JD (2010) Inhibition of notch signaling blocks growth of glioblastoma cell lines and tumor neurospheres. Genes Cancer 1:822–835

    Article  PubMed  CAS  Google Scholar 

  24. Zagzag D, Friedlander DR, Miller DC, Dosik J, Cangiarella J, Kostianovsky M, Cohen H, Grumet M, Greco MA (1995) Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res 55:907–914

    PubMed  CAS  Google Scholar 

  25. Leins A, Riva P, Lindstedt R, Davidoff MS, Mehraein P, Weis S (2003) Expression of tenascin-C in various human brain tumors and its relevance for survival in patients with astrocytoma. Cancer 98:2430–2439

    Article  PubMed  CAS  Google Scholar 

  26. Zagzag D, Shiff B, Jallo GI, Greco MA, Blanco C, Cohen H, Hukin J, Allen JC, Friedlander DR (2002) Tenascin-C promotes microvascular cell migration and phosphorylation of focal adhesion kinase. Cancer Res 62:2660–2668

    PubMed  CAS  Google Scholar 

  27. Deryugina EI, Bourdon MA (1996) Tenascin mediates human glioma cell migration and modulates cell migration on fibronectin. J Cell Sci 109(Pt 3):643–652

    PubMed  CAS  Google Scholar 

  28. Phillips GR, Krushel LA, Crossin KL (1998) Domains of tenascin involved in glioma migration. J Cell Sci 111(Pt 8):1095–1104

    PubMed  CAS  Google Scholar 

  29. VanMeter TE, Rooprai HK, Kibble MM, Fillmore HL, Broaddus WC, Pilkington GJ (2001) The role of matrix metalloproteinase genes in glioma invasion: co-dependent and interactive proteolysis. J Neurooncol 53:213–235

    Article  PubMed  CAS  Google Scholar 

  30. Rao JS (2003) Molecular mechanisms of glioma invasiveness the role of proteases. Nat Rev Cancer 3:489–501

    Google Scholar 

  31. Yong VW (2005) Metalloproteinases: mediators of pathology and regeneration in the CNS. Nat Rev Neurosci 6:931–944

    Article  PubMed  CAS  Google Scholar 

  32. Sarkar S, Nuttall RK, Liu S, Edwards DR, Yong VW (2006) Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Res 66:11771–11780

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the funds for National Key Clinic Department, the Natural Science Fund of China (No. 81171179), the Natural Science Fund of China (No. 81272439), the Funds for Key Sci-Tech Research Projects of Guangdong (No. 2008A030201019) and Guangzhou (No. 09B52120112-2009J1-C418-2, No. 2008A1-E4011-6) to Professor Xiaodan Jiang.

Conflict of interest

No conflicts of interest were declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dan Jiang.

Additional information

Lei Chen and Xiang-Rong Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 9234 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Chen, XR., Zhang, R. et al. MicroRNA-107 inhibits glioma cell migration and invasion by modulating Notch2 expression. J Neurooncol 112, 59–66 (2013). https://doi.org/10.1007/s11060-012-1037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-1037-7

Keywords

Navigation