Skip to main content

Advertisement

Log in

Examination of blood–brain barrier (BBB) integrity in a mouse brain tumor model

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood–brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a twofold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chan AW, Loeffler JS (2001) Controversies in the management of patients with brain metastases. Cancer J 7(2):105–107

    PubMed  CAS  Google Scholar 

  2. Wong ET, Berkenblit A (2004) The role of topotecan in the treatment of brain metastases. Oncologist 9(1):68–79

    Article  PubMed  CAS  Google Scholar 

  3. Cohen MH, Matthews MJ (1978) Small cell bronchogenic carcinoma: a distinct clinicopathologic entity. Semin Oncol 5(3):234–243

    PubMed  CAS  Google Scholar 

  4. Bart J, Groen HJ, Hendrikse NH, van der Graaf WT, Vaalburg W, de Vries EG (2000) The blood-brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev 26(6):449–462

    Article  PubMed  CAS  Google Scholar 

  5. Goldstein GW, Betz AL (1986) The blood–brain barrier. Sci Am 255(3):74–83

    Article  PubMed  CAS  Google Scholar 

  6. Loscher W, Potschka H (2005) Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2(1):86–98

    Article  PubMed  Google Scholar 

  7. Loscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76(1):22–76

    Article  PubMed  Google Scholar 

  8. Wiranowska M, Gonzalvo AA, Saporta S, Gonzalez OR, Prockop LD (1992) Evaluation of blood–brain barrier permeability and the effect of interferon in mouse glioma model. J Neurooncol 14(3):225–236

    Article  PubMed  CAS  Google Scholar 

  9. Fidler IJ, Yano S, Zhang RD, Fujimaki T, Bucana CD (2002) The seed and soil hypothesis: vascularisation and brain metastases. Lancet Oncol 3(1):53–57

    Article  PubMed  CAS  Google Scholar 

  10. Benarroch EE (2011) Circumventricular organs: receptive and homeostatic functions and clinical implications. Neurology 77(12):1198–1204

    Article  PubMed  Google Scholar 

  11. Triguero D, Buciak J, Pardridge WM (1990) Capillary depletion method for quantification of blood–brain barrier transport of circulating peptides and plasma proteins. J Neurochem 54(6):1882–1888

    Article  PubMed  CAS  Google Scholar 

  12. Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

    Article  PubMed  Google Scholar 

  13. Giglio P, Gilbert MR (2010) Neurologic complications of cancer and its treatment. Curr Oncol Rep 12(1):50–59

    Article  PubMed  Google Scholar 

  14. Kamar FG, Posner JB (2010) Brain metastases. Semin Neurol 30(3):217–235

    Article  PubMed  Google Scholar 

  15. Schuette W (2004) Treatment of brain metastases from lung cancer: chemotherapy. Lung Cancer 45(Suppl 2):S253–S257

    Article  PubMed  Google Scholar 

  16. Taimur S, Edelman MJ (2003) Treatment options for brain metastases in patients with non-small-cell lung cancer. Curr Oncol Rep 5(4):342–346

    Article  PubMed  Google Scholar 

  17. Wowra B, Muacevic A, Tonn JC (2012) CyberKnife radiosurgery for brain metastases. Prog Neurol Surg 25:201–209

    Article  PubMed  Google Scholar 

  18. Kawabe T, Phi JH, Yamamoto M, Kim DG, Barfod BE, Urakawa Y (2012) Treatment of brain metastasis from lung cancer. Prog Neurol Surg 25:148–155

    Article  PubMed  Google Scholar 

  19. Nieder C, Grosu AL, Spanne O, Andratschke NH, Geinitz H (2012) Brain metastases in patients under 50 years of age: retrospective analysis. Clin Exp Metastasis. doi:10.1007/s10585-012-9484-2

    PubMed  Google Scholar 

  20. Kim KH, Lee J, Lee JI, Nam do H, Kong DS, Ahn YC et al (2010) Can upfront systemic chemotherapy replace stereotactic radiosurgery or whole brain radiotherapy in the treatment of non-small cell lung cancer patients with asymptomatic brain metastases? Lung Cancer 68(2):258–263

    Article  PubMed  Google Scholar 

  21. Vogelbaum MA, Masaryk T, Mazzone P, Mekhail T, Fazio V, McCartney S et al (2005) S100beta as a predictor of brain metastases: brain versus cerebrovascular damage. Cancer 104(4):817–824

    Article  PubMed  CAS  Google Scholar 

  22. Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative study of microvessel ultrastructure in human peritumoral brain tissue. Evidence for a blood–brain barrier defect. J Neurosurg 67(5):697–705

    Article  PubMed  CAS  Google Scholar 

  23. Regina A, Demeule M, Laplante A, Jodoin J, Dagenais C, Berthelet F et al (2001) Multidrug resistance in brain tumors: roles of the blood–brain barrier. Cancer Metastasis Rev 20(1–2):13–25

    Article  PubMed  CAS  Google Scholar 

  24. Weiss L (1980) Metastasis: differences between cancer cells in primary and secondary tumors. Pathobiol Annu 10:51–81

    PubMed  CAS  Google Scholar 

  25. Wolff JE, Trilling T, Molenkamp G, Egeler RM, Jurgens H (1999) Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol 125(8–9):481–486

    Article  PubMed  CAS  Google Scholar 

  26. Talmadge JE, Fidler IJ (1982) Enhanced metastatic potential of tumor cells harvested from spontaneous metastases of heterogeneous murine tumors. J Natl Cancer Inst 69(4):975–980

    PubMed  CAS  Google Scholar 

  27. Isakov N, Feldman M, Segal S (1982) An immune response against the alloantigens of the 3LL Lewis lung carcinoma prevents the growth of lung metastases, but not of local allografts. Invasion Metastasis 2(1):12–32

    PubMed  CAS  Google Scholar 

  28. Conley FK (1979) Development of a metastatic brain tumor model in mice. Cancer Res 39(3):1001–1007

    PubMed  CAS  Google Scholar 

  29. Zhang Z, Hatori T, Nonaka H (2008) An experimental model of brain metastasis of lung carcinoma. Neuropathology 28(1):24–28

    Article  PubMed  CAS  Google Scholar 

  30. Taskar KS, Rudraraju V, Mittapalli RK, Samala R, Thorsheim HR, Lockman J et al (2012) Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm Res 29(3):770–781

    Article  PubMed  CAS  Google Scholar 

  31. Fathallah-Shaykh HM, Zhao LJ, Kafrouni AI, Smith GM, Forman J (2000) Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis. J Immunol 164(1):217–222

    PubMed  CAS  Google Scholar 

  32. Zhang RD, Price JE, Fujimaki T, Bucana CD, Fidler IJ (1992) Differential permeability of the blood–brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice. Am J Pathol 141(5):1115–1124

    PubMed  CAS  Google Scholar 

  33. Cranmer LD, Trevor KT, Bandlamuri S, Hersh EM (2005) Rodent models of brain metastasis in melanoma. Melanoma Res 15(5):325–356

    Article  PubMed  Google Scholar 

  34. Essig M, Weber MA, von Tengg-Kobligk H, Knopp MV, Yuh WT, Giesel FL (2006) Contrast-enhanced magnetic resonance imaging of central nervous system tumors: agents, mechanisms, and applications. Top Magn Reson Imaging 17(2):89–106

    Article  PubMed  Google Scholar 

  35. Rice A, Michaelis ML, Georg G, Liu Y, Turunen B, Audus KL (2003) Overcoming the blood–brain barrier to taxane delivery for neurodegenerative diseases and brain tumors. J Mol Neurosci 20(3):339–343

    Article  PubMed  CAS  Google Scholar 

  36. Bachmeier CJ, Spitzenberger TJ, Elmquist WF, Miller DW (2005) Quantitative assessment of HIV-1 protease inhibitor interactions with drug efflux transporters in the blood–brain barrier. Pharm Res 22(8):1259–1268

    Article  PubMed  CAS  Google Scholar 

  37. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T et al (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110(9):1309–1318

    PubMed  CAS  Google Scholar 

  38. Henson JW, Cordon-Cardo C, Posner JB (1992) P-glycoprotein expression in brain tumors. J Neurooncol 14(1):37–43

    Article  PubMed  CAS  Google Scholar 

  39. Sakata S, Fujiwara M, Ohtsuka K, Kamma H, Nagane M, Sakamoto A et al (2011) ATP-binding cassette transporters in primary central nervous system lymphoma: decreased expression of MDR1 P-glycoprotein and breast cancer resistance protein in tumor capillary endothelial cells. Oncol Rep 25(2):333–339

    PubMed  Google Scholar 

  40. Ginguene C, Champier J, Maallem S, Strazielle N, Jouvet A, Fevre-Montange M et al (2010) P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) localize in the microvessels forming the blood-tumor barrier in ependymomas. Brain Pathol 20(5):926–935

    PubMed  CAS  Google Scholar 

  41. Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D et al (2006) Osmotic blood–brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neurooncol 77(3):279–284

    Article  PubMed  CAS  Google Scholar 

  42. Meairs S, Alonso A (2007) Ultrasound, microbubbles and the blood–brain barrier. Prog Biophys Mol Biol 93(1–3):354–362

    Article  PubMed  Google Scholar 

  43. Sato S, Kawase T, Harada S, Takayama H, Suga S (1998) Effect of hyperosmotic solutions on human brain tumour vasculature. Acta Neurochir (Wien) 140(11):1135–1141; discussion 1141–1142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by research grants from National Institutes of Health (CA-93558) and the Manitoba Health Research Council (MHRC). Fellowship support for N.O. and R.M. were provided by MHRC. G.M.H. is a Canada Research Chair in Molecular Cardiolipin Metabolism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

On, N.H., Mitchell, R., Savant, S.D. et al. Examination of blood–brain barrier (BBB) integrity in a mouse brain tumor model. J Neurooncol 111, 133–143 (2013). https://doi.org/10.1007/s11060-012-1006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-1006-1

Keywords

Navigation