Skip to main content

Advertisement

Log in

Novel cell lines established from pediatric brain tumors

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The paucity of cell culture models for childhood brain tumors prompted us to establish pediatric cell lines for use in biological experiments and preclinical developmental therapeutic studies. Three cell lines were established, CHLA-200 (GBM), CHLA-259 (anaplastic medulloblastoma) and CHLA-266 (atypical teratoid rhabdoid tumor, AT/RT). Consistent with an AT/RT origin, CHLA-266 lacked INI1 expression and had monosomy 22. All lines had unique DNA short tandem repeat “fingerprints” matching that of the patient’s tumor tissue and were adherent on tissue culture plastic, but differed in morphology and doubling times. CHLA-200 had a silent mutation in TP53. CHLA-259 and CHLA-266 had wild-type TP53. All three lines were relatively resistant to multiple drugs when compared to the DAOY medulloblastoma cell line, using the DIMSCAN fluorescence digital image microscopy cytotoxicity assay. RNA expression of MYC and MYCN were quantified using RT-PCR (Taqman). CHLA-200 expressed MYC, DAOY and CHLA-259 expressed MYCN, and CHLA-266 expressed both MYCN and MYC. CHLA-200 was only tumorigenic subcutaneously, but CHLA-259 and CHLA-266 were tumorigenic both subcutaneously and in brains of NOD/SCID mice. Immunohistochemistry of the xenografts revealed GFAP staining in CHLA-200 and PGP 9.5 staining in CHLA-259 and CHLA-266 tumors. As expected, INI1 expression was lacking in CHLA-266 (AT/RT). These three new cell lines will provide useful models for research of pediatric brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AT/RT:

Atypical teratoid/rhabdoid tumor

VINC:

Vincristine

4-HC:

4-Hydroperoxycyclophosphamide

L-PAM:

Melphalan

CDDP:

Cisplatin

4-HPR:

Fenretinide

TPT:

Topotecan

ETOP:

Etoposide

FBS:

Fetal bovine serum

ITS:

Insulin, selenium, and transferrin

GFAP:

Glial fibrillary acidic protein

CNS:

Central Nervous System

References

  1. CBTRUS (2005) Central Brain Tumor Registry of the US. 2005–2006 Statistical report: primary brain tumors in the United States, 1998–2002

  2. Gurney JG, Smith MA, Bunin GR (1999) CNS and miscellaneous intracranial and intraspinal neoplasms. In: Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR (eds) Cancer incidence and survival among children and adolescents: United States SEER program, 1975–1995. National Cancer Institute. SEER Program, NIH, Bethesda, pp 51–63

    Google Scholar 

  3. Bredel M (2001) Anticancer drug resistance in primary human brain tumors. Brain Res Brain Res Rev 35:161–204

    Article  PubMed  CAS  Google Scholar 

  4. Rorke LB, Packer RJ, Biegel JA (1996) Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity. J Neurosurg 85:56–65

    Article  PubMed  CAS  Google Scholar 

  5. Reddy AT (2005) Atypical teratoid/rhabdoid tumors of the central nervous system. J Neurooncol 75:309–313

    Article  PubMed  CAS  Google Scholar 

  6. Robertson PL (2006) Advances in treatment of pediatric brain tumors. NeuroRx 3:276–291

    Article  PubMed  CAS  Google Scholar 

  7. DeAngelis LM (2005) Chemotherapy for brain tumors–a new beginning. N Engl J Med 352:1036–1038

    Article  PubMed  CAS  Google Scholar 

  8. Collins PJ, Hennessy LK, Leibelt CS, Roby RK, Reeder DJ, Foxall PA (2004) Developmental validation of a single-tube amplification of the 13 CODIS STR loci, D2S1338, D19S433, and amelogenin: the AmpFlSTR Identifiler PCR Amplification Kit. J Forensic Sci 49:1265–1277

    Google Scholar 

  9. Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP (2001) Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 61:6185–6193

    PubMed  CAS  Google Scholar 

  10. Keshelava N, Frgala T, Krejsa J, Kalous O, Reynolds CP (2005) DIMSCAN: a microcomputer fluorescence-based cytotoxicity assay for preclinical testing of combination chemotherapy. Methods Mol Med 110:139–153

    PubMed  CAS  Google Scholar 

  11. Frgala T, Kalous O, Proffitt RT, Reynolds CP (2007) A fluorescence microplate cytotoxicity assay with a 4-log dynamic range that identifies synergistic drug combinations. Mol Cancer Ther 6:886–897

    Article  PubMed  CAS  Google Scholar 

  12. Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, Graf N, Emser A, Pietsch T, Wolff JE, Kortmann RD, Kuehl J (2005) Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med 352:978–986

    Article  PubMed  CAS  Google Scholar 

  13. Villablanca JG, Krailo MD, Ames MM, Reid JM, Reaman GH, Reynolds CP (2006) Phase I trial of oral fenretinide in children with high-risk solid tumors: a report from the children’s oncology group (CCG 09709). J Clin Oncol 24:3423–3430

    Article  PubMed  CAS  Google Scholar 

  14. Yamada S, Khankaldyyan V, Bu X, Suzuki A, Gonzalez-Gomez I, Takahashi K, McComb JG, Laug WE (2004) A method to accurately inject tumor cells into the caudate/putamen nuclei of the mouse brain. Tokai J Exp Clin Med 29:167–173

    PubMed  Google Scholar 

  15. Burgos JS, Rosol M, Moats RA, Khankaldyyan V, Kohn DB, Nelson MD Jr, Laug WE (2003) Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques 34:1184–1188

    PubMed  CAS  Google Scholar 

  16. Otto-Duessel M, Khankaldyyan V, Gonzalez-Gomez I, Jensen MC, Laug WE, Rosol M (2006) In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma. Mol Imaging 5:57–64

    PubMed  Google Scholar 

  17. Jacobsen PF, Jenkyn DJ, Papadimitriou JM (1985) Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol 44:472–485

    Article  PubMed  CAS  Google Scholar 

  18. Puduvalli VK, Saito Y, Xu R, Kouraklis GP, Levin VA, Kyritsis AP (1999) Fenretinide activates caspases and induces apoptosis in gliomas. Clin Cancer Res 5:2230–2235

    PubMed  CAS  Google Scholar 

  19. Damodar Reddy C, Guttapalli A, Adamson PC, Vemuri MC, O’Rourke D, Sutton LN, Phillips PC (2006) Anticancer effects of fenretinide in human medulloblastoma. Cancer Lett 231:262–269

    Article  PubMed  CAS  Google Scholar 

  20. Alarcon-Vargas D, Zhang Z, Agarwal B, Challagulla K, Mani S, Kalpana GV (2006) Targeting cyclin D1, a downstream effector of INI1/hSNF5, in rhabdoid tumors. Oncogene 25:722–734

    Article  PubMed  CAS  Google Scholar 

  21. Serra A, Gaidano GL, Revello D, Guerrasio A, Ballerini P, Dalla Favera R, Saglio G (1992) A new TaqI polymorphism in the p53 gene. Nucleic Acids Res 20:928

    Article  PubMed  CAS  Google Scholar 

  22. Raffel C, Thomas GA, Tishler DM, Lassoff S, Allen JC (1993) Absence of p53 mutations in childhood central nervous system primitive neuroectodermal tumors. Neurosurgery 33:301–305 Discussion 305–306

    Article  PubMed  CAS  Google Scholar 

  23. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  PubMed  CAS  Google Scholar 

  24. Vasudevan SA, Nuchtern JG, Shohet JM (2005) Gene profiling of high risk neuroblastoma. World J Surg 29:317–324

    Article  PubMed  Google Scholar 

  25. Pfister S, Remke M, Benner A, Mendrzyk F, Toedt G, Felsberg J, Wittmann A, Devens F, Gerber NU, Joos S, Kulozik A, Reifenberger G, Rutkowski S, Wiestler OD, Radlwimmer B, Scheurlen W, Lichter P, Korshunov A (2009) Outcome prediction in pediatric medulloblastoma based on DNA copy-number aberrations of chromosomes 6q and 17q and the MYC and MYCN loci. J Clin Oncol 27:1627–1636

    Article  PubMed  Google Scholar 

  26. Swartling FJ, Grimmer MR, Hackett CS, Northcott PA, Fan QW, Goldenberg DD, Lau J, Masic S, Nguyen K, Yakovenko S, Zhe XN, Gilmer HC, Collins R, Nagaoka M, Phillips JJ, Jenkins RB, Tihan T, Vandenberg SR, James CD, Tanaka K, Taylor MD, Weiss WA, Chesler L (2010) Pleiotropic role for MYCN in medulloblastoma. Genes Dev 24:1059–1072

    Article  PubMed  CAS  Google Scholar 

  27. Ellison DW, Kocak M, Dalton J, Megahed H, Lusher ME, Ryan SL, Zhao W, Nicholson SL, Taylor RE, Bailey S, Clifford SC (2011) Definition of disease-risk stratification groups in childhood medulloblastoma using combined clinical, pathologic, and molecular variables. J Clin Oncol 29:1400–1407

    Article  PubMed  Google Scholar 

  28. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011–2015

    Article  PubMed  CAS  Google Scholar 

  29. Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  PubMed  CAS  Google Scholar 

  30. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lingner J, Harley CB, Cech TR (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955–959

    Article  PubMed  CAS  Google Scholar 

  31. Rooprai HK, Merzak A, Bullock P, Pilkington GJ (1997) Establishment and characterization of two paediatric brain tumour cell lines in vitro. Anticancer Res 17:4127–4134

    PubMed  CAS  Google Scholar 

  32. Di Tomaso E, Pang JC, Lam HK, Tian XX, Suen KW, Hui AB, Hjelm NM (2000) Establishment and characterization of a human cell line from paediatric cerebellar glioblastoma multiforme. Neuropathol Appl Neurobiol 26:22–30

    Article  PubMed  Google Scholar 

  33. Friedman HS, Burger PC, Bigner SH, Trojanowski JQ, Wikstrand CJ, Halperin EC, Bigner DD (1985) Establishment and characterization of the human medulloblastoma cell line and transplantable xenograft D283 Med. J Neuropathol Exp Neurol 44:592–605

    Article  PubMed  CAS  Google Scholar 

  34. Keles GE, Berger MS, Srinivasan J, Kolstoe DD, Bobola MS, Silber JR (1995) Establishment and characterization of four human medulloblastoma-derived cell lines. Oncol Res 7:493–503

    PubMed  CAS  Google Scholar 

  35. Yachnis AT, Neubauer D, Muir D (1998) Characterization of a primary central nervous system atypical teratoid/rhabdoid tumor and derivative cell line: immunophenotype and neoplastic properties. J Neuropathol Exp Neurol 57:961–971

    Article  PubMed  CAS  Google Scholar 

  36. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, Bayer L, LaFond D, Donahue BR, Marymont MH, Muraszko K, Langston J, Sposto R (2006) Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol 24:4202–4208

    Article  PubMed  CAS  Google Scholar 

  37. Chi SN, Zimmerman MA, Yao X, Cohen KJ, Burger P, Biegel JA, Rorke-Adams LB, Fisher MJ, Janss A, Mazewski C, Goldman S, Manley PE, Bowers DC, Bendel A, Rubin J, Turner CD, Marcus KJ, Goumnerova L, Ullrich NJ, Kieran MW (2009) Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. J Clin Oncol 27:385–389

    Article  PubMed  Google Scholar 

  38. Gardner SL, Asgharzadeh S, Green A, Horn B, McCowage G, Finlay J (2008) Intensive induction chemotherapy followed by high dose chemotherapy with autologous hematopoietic progenitor cell rescue in young children newly diagnosed with central nervous system atypical teratoid rhabdoid tumors. Pediatr Blood Cancer 51:235–240

    Article  PubMed  Google Scholar 

  39. Dhall G, Grodman H, Ji L, Sands S, Gardner S, Dunkel IJ, McCowage GB, Diez B, Allen JC, Gopalan A, Cornelius AS, Termuhlen A, Abromowitch M, Sposto R, Finlay JL (2008) Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr Blood Cancer 50:1169–1175

    Article  PubMed  Google Scholar 

  40. Orellana C, Hernandez-Marti M, Martinez F, Castel V, Millan JM, Alvarez-Garijo JA, Prieto F, Badia L (1998) Pediatric brain tumors: loss of heterozygosity at 17p and TP53 gene mutations. Cancer Genet Cytogenet 102:93–99

    Article  PubMed  CAS  Google Scholar 

  41. Pollack IF, Finkelstein SD, Burnham J, Holmes EJ, Hamilton RL, Yates AJ, Finlay JL, Sposto R (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61:7404–7407

    PubMed  CAS  Google Scholar 

  42. Maltzman W, Czyzyk L (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol Cell Biol 4:1689–1694

    PubMed  CAS  Google Scholar 

  43. Fritsche M, Haessler C, Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8:307–318

    PubMed  CAS  Google Scholar 

  44. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  45. Cargioli TG, Ugur HC, Ramakrishna N, Chan J, Black PM, Carroll RS (2007) Establishment of an in vivo meningioma model with human telomerase reverse transcriptase. Neurosurgery 60:750–759 Discussion 759–760

    Article  PubMed  Google Scholar 

  46. Fan X, Wang Y, Kratz J, Brat DJ, Robitaille Y, Moghrabi A, Perlman EJ, Dang CV, Burger PC, Eberhart CG (2003) hTERT gene amplification and increased mRNA expression in central nervous system embryonal tumors. Am J Pathol 162:1763–1769

    Article  PubMed  CAS  Google Scholar 

  47. Herms J, Neidt I, Luscher B, Sommer A, Schurmann P, Schroder T, Bergmann M, Wilken B, Probst-Cousin S, Hernaiz-Driever P, Behnke J, Hanefeld F, Pietsch T, Kretzschmar HA (2000) C-MYC expression in medulloblastoma and its prognostic value. Int J Cancer 89:395–402

    Article  PubMed  CAS  Google Scholar 

  48. Eberhart CG, Kratz J, Wang Y, Summers K, Stearns D, Cohen K, Dang CV, Burger PC (2004) Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 63:441–449

    PubMed  CAS  Google Scholar 

  49. Stearns D, Chaudhry A, Abel TW, Burger PC, Dang CV, Eberhart CG (2006) c-myc overexpression causes anaplasia in medulloblastoma. Cancer Res 66:673–681

    Article  PubMed  CAS  Google Scholar 

  50. Hayashi S, Yamamoto M, Ueno Y, Ikeda K, Ohshima K, Soma G, Fukushima T (2001) Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol Med Chir (Tokyo) 41:187–195

    Article  CAS  Google Scholar 

  51. Fujisawa H, Takabatake Y, Fukusato T, Tachibana O, Tsuchiya Y, Yamashita J (2003) Molecular analysis of the rhabdoid predisposition syndrome in a child: a novel germline hSNF5/INI1 mutation and absence of c-myc amplification. J Neurooncol 63:257–262

    Article  PubMed  Google Scholar 

  52. Brodeur GM, Hayes FA, Green AA, Casper JT, Wasson J, Wallach S, Seeger RC (1987) Consistent N-myc copy number in simultaneous or consecutive neuroblastoma samples from sixty individual patients. Cancer Res 47:4248–4253

    PubMed  CAS  Google Scholar 

  53. Slavc I, Ellenbogen R, Jung WH, Vawter GF, Kretschmar C, Grier H, Korf BR (1990) myc gene amplification and expression in primary human neuroblastoma. Cancer Res 50:1459–1463

    PubMed  CAS  Google Scholar 

  54. Matthay KK (2000) MYCN expression in neuroblastoma: a mixed message? J Clin Oncol 18:3591–3594

    PubMed  CAS  Google Scholar 

  55. Grimmer MR, Weiss WA (2006) Childhood tumors of the nervous system as disorders of normal development. Curr Opin Pediatr 18:634–638

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Devin Hock Memorial Fund of the Michael Hoefflin Foundation. This work was also partially supported by a Pre-Institute Award from the Pediatric Brain Tumor Foundation of the US, by National Institutes of Health grants CA98568 and a gift from the Grayson’s Fund to AEE, and CA46274 to JAB, and by RP 110763 from the Cancer Prevention and Research Institute of Texas to CPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Patrick Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Erdreich-Epstein, A., Gonzalez-Gomez, I. et al. Novel cell lines established from pediatric brain tumors. J Neurooncol 107, 269–280 (2012). https://doi.org/10.1007/s11060-011-0756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0756-5

Keywords

Navigation