Skip to main content

Advertisement

Log in

Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

To investigate the tumor-initiating cells (TICs) in rhabdoid meningioma (RM), a population of CD105-positive cells isolated from a fresh RM surgical sample was analyzed for proliferative activity, self-renewal ability, tumorigenic ability, multilineage differentiation potential, as well as chromosomal aberrations. The results showed that isolated CD105-positive cells could be maintained for more than 50 generations in vitro. These cells exhibited increased proliferative activity and single-cell tumor sphere-formation ability compared with CD105-negative cells. In vivo experiments showed that CD105-positive cells possessed much greater potential to reconstitute the original human RM in nude mice as compared with CD105-negative cells. Phenotypically, CD105-positive cells shared some surface markers with mesenchymal progenitor cells (MPCs), but karyotype analysis showed chromosomal abnormalities characteristic of malignant meningioma, thus distinguishing them from supportive stroma-derived MPCs. In addition, in contrast to CD105-negative cells, CD105-positive cells could differentiate into adipocytes and osteocytes in response to specific induction agents. Finally, CD105-positive cells with stem-like features were also isolated from xenograft tumors. In conclusion, a population of CD105-positive TICs with some traits of MPCs was identified in RM and might provide a promising therapeutic target in management of malignant meningioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

RM:

Rhabdoid meningioma

VIM:

Vimentin

References

  1. Kim EY, Weon YC, Kim ST, Kim HJ, Byun HS, Lee JI, Kim JH (2007) Rhabdoid meningioma: clinical features and MR imaging findings in 15 patients. AJNR Am J Neuroradiol 28:1462–1465

    Article  PubMed  CAS  Google Scholar 

  2. Klein R, Bendszus M, Perez J, Roggendorf W (2002) Rhabdoid meningioma. A new malignant subtype. Pathologe 23:297–302

    Article  PubMed  CAS  Google Scholar 

  3. Perry A, Scheithauer BW, Stafford SL, Abell-Aleff PC, Meyer FB (1998) “Rhabdoid” meningioma: an aggressive variant. Am J Surg Pathol 22:1482–1490

    Google Scholar 

  4. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  5. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  7. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  8. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  9. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed  CAS  Google Scholar 

  10. Hueng DY, Sytwu HK, Huang SM, Chang C, Ma HI (2010) Isolation and characterization of tumor stem-like cells from human meningiomas. J Neurooncol 104(1):45–53 (in press)

    Google Scholar 

  11. Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A, Thomas G, Gutmann DH, Giovannini M (2002) Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 16:1060–1065

    Article  PubMed  CAS  Google Scholar 

  12. Saydam O, Shen Y, Würdinger T, Senol O, Boke E, James MF, Tannous BA, Stemmer-Rachamimov AO, Yi M, Stephens RM, Fraefel C, Gusella JF, Krichevsky AM, Breakefield XO (2009) Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol 29(21):5923–5940

    Article  PubMed  CAS  Google Scholar 

  13. Korpal M, Kang Y (2008) The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol 5:115–119

    Article  PubMed  CAS  Google Scholar 

  14. Ahmed N, Vogel B, Rohde E, Strunk D, Grifka J, Schulz MB, Grässel S (2006) CD45-positive cells of haematopoietic origin enhance chondrogenic marker gene expression in rat marrow stromal cells. Int J Mol Med 18(2):233–240

    PubMed  CAS  Google Scholar 

  15. Koide Y, Morikawa S, Mabuchi Y, Muguruma Y, Hiratsu E, Hasegawa K, Kobayashi M, Ando K, Kinjo K, Okano H, Matsuzaki Y (2007) Two distinct stem cell lineages in murine bone marrow. Stem Cells 25:1213–1221

    Article  PubMed  CAS  Google Scholar 

  16. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48:4827–4833

    PubMed  CAS  Google Scholar 

  17. Grange C, Lanzardo S, Cavallo F, Camussi G, Bussolati B (2008) Sca-1 identifies the tumor-initiating cells in mammary tumors of BALB-neuT transgenic mice. Neoplasia 10(12):1433–1443

    PubMed  Google Scholar 

  18. Wan C, He Q, McCaigue M, Marsh D, Li G (2006) Nonadherent cell population of human marrow culture is a complementary source of mesenchymal stem cells (MSCs). J Orthop Res 24:21–28

    Article  PubMed  Google Scholar 

  19. Gnecchi M, Melo LG (2009) Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium. Methods Mol Biol 482:281–294

    Article  PubMed  CAS  Google Scholar 

  20. Anderson RM, Stevens DL, Goodhead DT (2002) M-FISH analysis shows that complex chromosome aberrations induced by alpha-particle tracks are cumulative products of localized rearrangements. Proc Natl Acad Sci USA 99:12167–12172

    Article  PubMed  CAS  Google Scholar 

  21. Grenman R, Burk D, Virolainen E, Buick RN, Church J, Schwartz DR, Carey TE (1989) Clonogenic cell assay for anchorage-dependent squamous carcinoma cell lines using limiting dilution. Int J Cancer 44(1):131–136

    Article  PubMed  CAS  Google Scholar 

  22. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  23. Inagaki A, Soeda A, Oka N, Kitajima H, Nakagawa J, Motohashi T, Kunisada T, Iwama T (2007) Long-term maintenance of brain tumor stem cell properties under at non-adherent and adherent culture conditions. Biochem Biophys Res Commun 361(3):586–92

    Google Scholar 

  24. Barresi V, Cerasoli S, Vitarelli E, Tuccari G (2007) Density of microvessels positive for CD105 (endoglin) is related to prognosis in meningiomas. Acta Neuropathol 114(2):147–156

    Article  PubMed  CAS  Google Scholar 

  25. Ren G, Zhang L, Wen T, Zhao X, Yuan Z, Zhang J, Lin W, L'hullie A, Shao C, Shi Y (2010) Tumor-derived mesenchymal stem cells enhance tumor development via nitric oxide. J Immunol 184,100.33 (Meeting Abstract)

  26. Wada K, Maruno M, Suzuki T, Kagawa N, Hashiba T, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T (2005) Chromosomal and genetic abnormalities in benign and malignant meningiomas using DNA microarray. Neurol Res 27:747–754

    Article  PubMed  CAS  Google Scholar 

  27. Ragel BT, Jensen RL (2005) Molecular genetics of meningiomas. Neurosurg Focus 19:E9

    Article  PubMed  Google Scholar 

  28. Lang Sh, Frame F, Collins A (2009) Prostate cancer stem cells. J Pathol 217(2):299–306

    Article  PubMed  CAS  Google Scholar 

  29. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68:4311–4320

    Article  PubMed  CAS  Google Scholar 

  30. Bussolati B, Bruno S, Grange C, Ferrando U, Camussi G (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22:3696–3705

    Article  PubMed  CAS  Google Scholar 

  31. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–68

    Google Scholar 

  32. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–8

    Google Scholar 

  33. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U, Beier CP (2007) CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67(9):4010–4015

    Article  PubMed  CAS  Google Scholar 

  34. Riggi N, Suvà ML, Suvà D, Cironi L, Provero P, Tercier S, Joseph JM, Stehle JC, Baumer K, Kindler V, Stamenkovic I (2008) EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 68:2176–2185

    Article  PubMed  CAS  Google Scholar 

  35. Tirode F, Laud-Duval K, Prieur A, Delorme B, Charbord P, Delattre O (2007) Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11:421–429

    Article  PubMed  CAS  Google Scholar 

  36. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  37. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49:193–199

    Article  PubMed  Google Scholar 

  38. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM (2008) Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res 14:1931–1937

    Article  PubMed  CAS  Google Scholar 

  39. Fonsatti E, Altomonte M, Nicotra MR, Natali PG, Maio M (2003) Endoglin (CD105): a powerful therapeutic target on tumor-associated angiogenetic blood vessels. Oncogene 22:6557–6563

    Article  PubMed  CAS  Google Scholar 

  40. Duff SE, Li C, Garland JM, Kumar S (2003) CD105 is important for angiogenesis: evidence and Potential applications. FASEB J 17:984–992

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Guoping Zhang for technique support in Flow cytometric analysis, Dr. Xuqun Tang for help in using the statistic software, and Dr. Keke Zhou for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Mao.

Additional information

Dr. Dezhi Hu and Dr. Xiaomei Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, D., Wang, X., Mao, Y. et al. Identification of CD105 (endoglin)-positive stem-like cells in rhabdoid meningioma. J Neurooncol 106, 505–517 (2012). https://doi.org/10.1007/s11060-011-0705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0705-3

Keywords

Navigation