Skip to main content

Advertisement

Log in

The transglutaminase 2 gene is aberrantly hypermethylated in glioma

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Transglutaminase 2 (TG2) is a ubiquitously expressed protein that catalyzes protein/protein crosslinking. Because extracellular TG2 crosslinks components of the extracellular matrix, TG2 is thought to function as a suppressor of cellular invasion. We have recently uncovered that the TG2 gene (TGM2) is a target for epigenetic silencing in breast cancer, highlighting a molecular mechanism that drives reduced TG2 expression, and this aberrant molecular event may contribute to invasiveness in this tumor type. Because tumor invasiveness is a primary determinant of brain tumor aggressiveness, we sought to determine if TGM2 is targeted for epigenetic silencing in glioma. Analysis of TGM2 gene methylation in a panel of cultured human glioma cells indicated that the 5′ flanking region of the TGM2 gene is hypermethylated and that this feature is associated with reduced TG2 expression as judged by immunoblotting. Further, culturing glioma cells in the presence of the global DNA demethylating agent 5-aza-2′-deoxycytidine and the histone deacetylase inhibitor Trichostatin A resulted in re-expression of TG2 in these lines. In primary brain tumors we observed that the TGM2 promoter is commonly hypermethylated and that this feature is a cancer-associated phenomenon. Using publically available databases, TG2 expression in gliomas was found to vary widely, with many tumors showing overexpression or underexpression of this gene. Since overexpression of TG2 leads to resistance to doxorubicin through the ectopic activation of NFκB, we sought to examine the effects of recombinant TG2 expression in glioma cells treated with commonly used brain tumor therapeutics. We observed that in addition to doxorubicin, TG2 expression drove resistance to CCNU; however, TG2 expression did not alter sensitivity to other drugs tested. Finally, a catalytically null mutant of TG2 was also able to support doxorubicin resistance in glioma cells indicating that transglutaminase activity is not necessary for the resistance phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weinberg RA (1996) How cancer arises. Sci Am 275:62–70

    Article  CAS  PubMed  Google Scholar 

  2. Bird A (1992) The essentials of DNA methylation. Cell 70:5–8

    Article  CAS  PubMed  Google Scholar 

  3. Wolffe AP (2001) Chromatin remodeling: why it is important in cancer. Oncogene 20:2988–2990

    Article  CAS  PubMed  Google Scholar 

  4. Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58:9–35

    Article  CAS  PubMed  Google Scholar 

  5. Aeschlimann D, Thomazy V (2000) Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res 41:1–27

    Article  CAS  PubMed  Google Scholar 

  6. Zemskov EA, Janiak A, Hang J, Waghray A, Belkin AM (2006) The role of tissue transglutaminase in cell-matrix interactions. Front Biosci 11:1057–1076

    Article  CAS  PubMed  Google Scholar 

  7. Telci D, Griffin M (2006) Tissue transglutaminase (TG2)—a wound response enzyme. Front Biosci 11:867–882

    Article  CAS  PubMed  Google Scholar 

  8. Haroon ZA, Lai TS, Hettasch JM, Lindberg RA, Dewhirst MW, Greenberg CS (1999) Tissue transglutaminase is expressed as a host response to tumor invasion and inhibits tumor growth. Lab Invest 79:1679–1686

    CAS  PubMed  Google Scholar 

  9. Jones RA, Kotsakis P, Johnson TS et al (2006) Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ 13:1442–1453

    Article  CAS  PubMed  Google Scholar 

  10. Mehta K (1994) High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer 58:400–406

    Article  CAS  PubMed  Google Scholar 

  11. Yuan L, Choi K, Khosla C et al (2005) Tissue transglutaminase 2 inhibition promotes cell death and chemosensitivity in glioblastomas. Mol Cancer Ther 4:1293–1302

    Article  CAS  PubMed  Google Scholar 

  12. Chen JS, Agarwal N, Mehta K (2002) Multidrug-resistant MCF-7 breast cancer cells contain deficient intracellular calcium pools. Breast Cancer Res Treat 71:237–247

    Article  CAS  PubMed  Google Scholar 

  13. Han JA, Park SC (1999) Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line. J Cancer Res Clin Oncol 125:89–95

    Article  CAS  PubMed  Google Scholar 

  14. Herman JF, Mangala LS, Mehta K (2006) Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene 25:3049–3058

    Article  CAS  PubMed  Google Scholar 

  15. Kim DS, Park SS, Nam BH, Kim IH, Kim SY (2006) Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res 66:10936–10943

    Article  CAS  PubMed  Google Scholar 

  16. Mann AP, Verma A, Sethi G et al (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-{kappa}B in cancer cells: delineation of a novel pathway. Cancer Res 66:8788–8795

    Article  CAS  PubMed  Google Scholar 

  17. Kotsakis P, Griffin M (2007) Tissue transglutaminase in tumour progression: friend or foe? Amino Acids 33:373–384

    Article  CAS  PubMed  Google Scholar 

  18. Chhabra A, Verma A, Mehta K (2009) Tissue transglutaminase promotes or suppresses tumors depending on cell context. Anticancer Res 29:1909–1919

    CAS  PubMed  Google Scholar 

  19. Partap S, Fisher PG (2007) Update on new treatments and developments in childhood brain tumors. Curr Opin Pediatr 19:670–674

    Article  PubMed  Google Scholar 

  20. Nieder C, Mehta MP, Jalali R (2009) Combined radio- and chemotherapy of brain tumours in adult patients. Clin Oncol (R Coll Radiol) 21:515–524

    CAS  Google Scholar 

  21. Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG (2004) Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36:1046–1069

    Article  CAS  PubMed  Google Scholar 

  22. Nieder C, Adam M, Molls M, Grosu AL (2006) Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. Crit Rev Oncol Hematol 60:181–193

    Article  PubMed  Google Scholar 

  23. Hunter SB, Brat DJ, Olson JJ, Von Deimling A, Zhou W, Van Meir EG (2003) Alterations in molecular pathways of diffusely infiltrating glial neoplasms: application to tumor classification and anti-tumor therapy (Review). Int J Oncol 23:857–869

    CAS  PubMed  Google Scholar 

  24. Liotta LA, Steeg PS, Stetler-Stevenson WG (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64:327–336

    Article  CAS  PubMed  Google Scholar 

  25. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14:2123–2133

    Article  CAS  PubMed  Google Scholar 

  26. Jaworski DM, Kelly GM, Piepmeier JM, Hockfield S (1996) BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Res 56:2293–2298

    CAS  PubMed  Google Scholar 

  27. Koochekpour S, Pilkington GJ, Merzak A (1995) Hyaluronic acid/CD44H interaction induces cell detachment and stimulates migration and invasion of human glioma cells in vitro. Int J Cancer 63:450–454

    Article  CAS  PubMed  Google Scholar 

  28. Koochekpour S, Merzak A, Pilkington GJ (1995) Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma cell lines. Eur J Cancer 31A:375–380

    Article  CAS  PubMed  Google Scholar 

  29. Paulus W, Baur I, Dours-Zimmermann MT, Zimmermann DR (1996) Differential expression of versican isoforms in brain tumors. J Neuropathol Exp Neurol 55:528–533

    Article  CAS  PubMed  Google Scholar 

  30. Nakada M, Nakada S, Demuth T, Tran NL, Hoelzinger DB, Berens ME (2007) Molecular targets of glioma invasion. Cell Mol Life Sci 64:458–478

    Article  CAS  PubMed  Google Scholar 

  31. Paulus W, Tonn JC (1995) Interactions of glioma cells and extracellular matrix. J Neurooncol 24:87–91

    Article  CAS  PubMed  Google Scholar 

  32. Ai L, Kim WJ, Demircan B et al (2008) The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis 29:510–518

    Article  CAS  PubMed  Google Scholar 

  33. Qiu J, Ai L, Ramachandran C et al (2008) Invasion suppressor cystatin E/M (CST6): high-level cell type-specific expression in normal brain and epigenetic silencing in gliomas. Lab Invest 88:910–925

    Article  CAS  PubMed  Google Scholar 

  34. Demircan B, Dyer LM, Gerace M, Lobenhofer EK, Robertson KD, Brown KD (2009) Comparative epigenomics of human and mouse mammary tumors. Genes Chromosomes Cancer 48:83–97

    Article  CAS  PubMed  Google Scholar 

  35. Chalmers-Redman RM, Priestley T, Kemp JA, Fine A (1997) In vitro propagation and inducible differentiation of multipotential progenitor cells from human fetal brain. Neuroscience 76:1121–1128

    Article  CAS  PubMed  Google Scholar 

  36. Yuan L, Siegel M, Choi K et al (2006) Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 26:2563–2573

    Google Scholar 

  37. Verma A, Mehta K (2007) Tissue transglutaminase-mediated chemoresistance in cancer cells. Drug Resist Updat 10:144–151

    Article  CAS  PubMed  Google Scholar 

  38. Murthy SN, Iismaa S, Begg G, Freymann DM, Graham RM, Lorand L (2002) Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc Natl Acad Sci USA 99:2738–2742

    Article  CAS  PubMed  Google Scholar 

  39. Levicar N, Strojnik T, Kos J, Dewey RA, Pilkington GJ, Lah TT (2002) Lysosomal enzymes, cathepsins in brain tumour invasion. J Neurooncol 58:21–32

    Article  PubMed  Google Scholar 

  40. Johnson TS, Knight CR, el-Alaoui S et al (1994) Transfection of tissue transglutaminase into a highly malignant hamster fibrosarcoma leads to a reduced incidence of primary tumour growth. Oncogene 9:2935–2942

    CAS  PubMed  Google Scholar 

  41. Jones RA, Nicholas B, Mian S, Davies PJ, Griffin M (1997) Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci 110(Pt 19):2461–2472

    CAS  PubMed  Google Scholar 

  42. Verderio E, Nicholas B, Gross S, Griffin M (1998) Regulated expression of tissue transglutaminase in Swiss 3T3 fibroblasts: effects on the processing of fibronectin, cell attachment, and cell death. Exp Cell Res 239:119–138

    Article  CAS  PubMed  Google Scholar 

  43. Balklava Z, Verderio E, Collighan R, Gross S, Adams J, Griffin M (2002) Analysis of tissue transglutaminase function in the migration of Swiss 3T3 fibroblasts: the active-state conformation of the enzyme does not affect cell motility but is important for its secretion. J Biol Chem 277:16567–16575

    Article  CAS  PubMed  Google Scholar 

  44. Mangala LS, Arun B, Sahin AA, Mehta K (2005) Tissue transglutaminase-induced alterations in extracellular matrix inhibit tumor invasion. Mol Cancer 4:33

    Article  PubMed  Google Scholar 

  45. Mangala LS, Fok JY, Zorrilla-Calancha IR, Verma A, Mehta K (2007) Tissue transglutaminase expression promotes cell attachment, invasion and survival in breast cancer cells. Oncogene 26:2459–2470

    Article  CAS  PubMed  Google Scholar 

  46. Satpathy M, Cao L, Pincheira R et al (2007) Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res 67:7194–7202

    Article  CAS  PubMed  Google Scholar 

  47. Verma A, Guha S, Diagaradjane P et al (2008) Therapeutic significance of elevated tissue transglutaminase expression in pancreatic cancer. Clin Cancer Res 14:2476–2483

    Article  CAS  PubMed  Google Scholar 

  48. Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA (2009) Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem 284:17914–17925

    Article  CAS  PubMed  Google Scholar 

  49. Lee J, Kim YS, Choi DH et al (2004) Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem 279:53725–53735

    Article  CAS  PubMed  Google Scholar 

  50. Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713

    Article  CAS  PubMed  Google Scholar 

  51. Ghosh S, May MJ, Kopp EB (1998) NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  52. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310

    Article  CAS  PubMed  Google Scholar 

  53. Nagai S, Washiyama K, Kurimoto M, Takaku A, Endo S, Kumanishi T (2002) Aberrant nuclear factor-kappaB activity and its participation in the growth of human malignant astrocytoma. J Neurosurg 96:909–917

    Article  CAS  PubMed  Google Scholar 

  54. Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN (2004) Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest 84:941–951

    Article  CAS  PubMed  Google Scholar 

  55. Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D (2008) Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis 29:1893–1900

    Article  CAS  PubMed  Google Scholar 

  56. Park KS, Kim HK, Lee JH et al (2010) Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer. J Cancer Res Clin Oncol 136:493–502

    Google Scholar 

  57. Antonyak MA, Singh US, Lee DA et al (2001) Effects of tissue transglutaminase on retinoic acid-induced cellular differentiation and protection against apoptosis. J Biol Chem 276:33582–33587

    Article  CAS  PubMed  Google Scholar 

  58. Boehm JE, Singh U, Combs C, Antonyak MA, Cerione RA (2002) Tissue transglutaminase protects against apoptosis by modifying the tumor suppressor protein p110 Rb. J Biol Chem 277:20127–20130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Jonathan Green for technical expertise and the Florida Center for Brain Tumor Research (FCBTR) for providing access to clinical samples. Work was supported by a grant (RO1 CA102289) to KDB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, L.M., Schooler, K.P., Ai, L. et al. The transglutaminase 2 gene is aberrantly hypermethylated in glioma. J Neurooncol 101, 429–440 (2011). https://doi.org/10.1007/s11060-010-0277-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0277-7

Keywords

Navigation