Skip to main content

Advertisement

Log in

Directed evolution of adeno-associated virus for glioma cell transduction

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma multiforme (GBM) is a serious form of brain cancer for which there is currently no effective treatment. Alternative strategies such as adeno-associated virus (AAV) vector mediated-genetic modification of brain tumor cells with genes encoding anti-tumor proteins have shown promising results in preclinical models of GBM, although the transduction efficiency of these tumors is often low. As higher transduction efficiency of tumor cells should lead to enhanced therapeutic efficacy, a means to rapidly engineer AAV vectors with improved transduction efficiency for individual tumors is an attractive strategy. Here we tested the possibility of identifying high-efficiency AAV vectors for human U87 glioma cells by selection in culture of a newly constructed chimeric AAV capsid library generated by DNA shuffling of six different AAV cap genes (AAV1, AAV2, AAV5, AAVrh.8, AAV9, AAVrh.10). After seven rounds of selection, we obtained a chimeric AAV capsid that transduces U87 cells at high efficiency (97% at a dose of 104 genome copies/cell), and at low doses it was 1.45–1.6-fold better than AAV2, which proved to be the most efficient parental capsid. Interestingly, the new AAV capsid displayed robust gene delivery properties to all glioma cells tested (including primary glioma cells) with relative fluorescence indices ranging from 1- to 14-fold higher than AAV2. The selected vector should be useful for in vitro glioma research when efficient transduction of several cell lines is required, and provides proof-of-concept that an AAV library can be used to generate AAV vectors with enhanced transduction efficiency of glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neurooncology 4:278–299

    Google Scholar 

  2. Wallner KE, Galicich JH, Krol G, Arbit E, Malkin MG (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409

    CAS  PubMed  Google Scholar 

  3. Stewart LA (2002) Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 359:1011–1018

    Article  CAS  PubMed  Google Scholar 

  4. Yoshida J, Mizuno M, Nakahara N, Colosi P (2002) Antitumor effect of an adeno-associated virus vector containing the human interferon-beta gene on experimental intracranial human glioma. Jpn J Cancer Res 93:223–228

    CAS  PubMed  Google Scholar 

  5. Mizuno M, Yoshida J, Colosi P, Kurtzman G (1998) Adeno-associated virus vector containing the herpes simplex virus thymidine kinase gene causes complete regression of intracerebrally implanted human gliomas in mice, in conjunction with ganciclovir administration. Jpn J Cancer Res 89:76–80

    CAS  PubMed  Google Scholar 

  6. Huszthy PC, Svendsen A, Wilson JM, Kotin RM, Lonning PE, Bjerkvig R, Hoover F (2005) Widespread dispersion of adeno-associated virus serotype 1 and adeno-associated virus serotype 6 vectors in the rat central nervous system and in human glioblastoma multiforme xenografts. Hum Gene Ther 16:381–392

    Article  CAS  PubMed  Google Scholar 

  7. Harding TC, Dickinson PJ, Roberts BN, Yendluri S, Gonzalez-Edick M, Lecouteur RA, Jooss KU (2006) Enhanced gene transfer efficiency in the murine striatum and an orthotopic glioblastoma tumor model, using AAV-7- and AAV-8-pseudotyped vectors. Hum Gene Ther 17:807–820

    Article  CAS  PubMed  Google Scholar 

  8. Reardon DA, Wen PY (2006) Therapeutic advances in the treatment of glioblastoma: rationale and potential role of targeted agents. Oncologist 11:152–164

    Article  CAS  PubMed  Google Scholar 

  9. Wollmann G, Tattersall P, van den Pol AN (2005) Targeting human glioblastoma cells: comparison of nine viruses with oncolytic potential. J Virol 79:6005–6022

    Article  CAS  PubMed  Google Scholar 

  10. Thorsen F, Afione S, Huszthy PC, Tysnes BB, Svendsen A, Bjerkvig R, Kotin RM, Lonning PE, Hoover F (2006) Adeno-associated virus (AAV) serotypes 2, 4 and 5 display similar transduction profiles and penetrate solid tumor tissue in models of human glioma. J Gene Med 8:1131–1140

    Article  CAS  PubMed  Google Scholar 

  11. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R, Weitzman MD (2001) Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 3:964–975

    Article  CAS  PubMed  Google Scholar 

  12. Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J, Deleage G, Hallek M (1999) Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 5:1052–1056

    Article  CAS  PubMed  Google Scholar 

  13. Buning H, Ried MU, Perabo L, Gerner FM, Huttner NA, Enssle J, Hallek M (2003) Receptor targeting of adeno-associated virus vectors. Gene Ther 10:1142–1151

    Article  CAS  PubMed  Google Scholar 

  14. Work LM, Buning H, Hunt E, Nicklin SA, Denby L, Britton N, Leike K, Odenthal M, Drebber U, Hallek M, Baker AH (2006) Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 13:683–693

    Article  CAS  PubMed  Google Scholar 

  15. Warrington KH Jr, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N (2004) Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78:6595–6609

    Article  CAS  PubMed  Google Scholar 

  16. Yang Q, Mamounas M, Yu G, Kennedy S, Leaker B, Merson J, Wong-Staal F, Yu M, Barber JR (1998) Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Hum Gene Ther 9:1929–1937

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327

    Article  CAS  PubMed  Google Scholar 

  18. Buning H, Perabo L, Coutelle O, Quadt-Humme S, Hallek M (2008) Recent developments in adeno-associated virus vector technology. J Gene Med 10:717–733

    Article  PubMed  Google Scholar 

  19. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24:198–204

    Article  CAS  PubMed  Google Scholar 

  20. Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82:5887–5911

    Article  CAS  PubMed  Google Scholar 

  21. Koerber JT, Jang JH, Schaffer DV (2008) DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther 16:1703–1709

    Google Scholar 

  22. Li W, Asokan A, Wu Z, Van Dyke T, Diprimio N, Johnson JS, Govindaswamy L, Agbandje-McKenna M, Leichtle S, Eugene Redmond Jr D, McCown TJ, Petermann KB, Sharpless NE, Samulski RJ (2008) Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 16:1252–1260

  23. Kwon I, Schaffer DV (2008) Designer gene delivery vectors: molecular engineering and evolution of adeno-associated viral vectors for enhanced gene transfer. Pharm Res 25:489–499

    Article  CAS  PubMed  Google Scholar 

  24. Perabo L, Buning H, Kofler DM, Ried MU, Girod A, Wendtner CM, Enssle J, Hallek M (2003) In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther 8:151–157

    Article  CAS  PubMed  Google Scholar 

  25. White SJ, Nicklin SA, Buning H, Brosnan MJ, Leike K, Papadakis ED, Hallek M, Baker AH (2004) Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109:513–519

    Article  CAS  PubMed  Google Scholar 

  26. Sena-Esteves M, Hampl JA, Camp SM, Breakefield XO (2002) Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors. J Gene Med 4:229–239

    Article  PubMed  Google Scholar 

  27. Hiroaki Wakimoto SK, Farrell CJ, Curry WT Jr, Zaupa C, Aghi M, Kuroda T, Stemmer-Rachamimov A, Liu T-C, Jeyaretna DS, Debasitis J, Shah K, Pruszak J, Martuza RL, Rabkin SD (in Press) Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res 69:3472–3481

  28. Walsh CE, Liu JM, Xiao X, Young NS, Nienhuis AW, Samulski RJ (1992) Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by an adeno-associated virus vector. Proc Natl Acad Sci USA 89:7257–7261

    Article  CAS  PubMed  Google Scholar 

  29. Broekman ML, Comer LA, Hyman BT, Sena-Esteves M (2006) Adeno-associated virus vectors serotyped with AAV8 capsid are more efficient than AAV-1 or -2 serotypes for widespread gene delivery to the neonatal mouse brain. Neuroscience 138:501–510

    Article  CAS  PubMed  Google Scholar 

  30. Gao G, Alvira MR, Somanathan S, Lu Y, Vandenberghe LH, Rux JJ, Calcedo R, Sanmiguel J, Abbas Z, Wilson JM (2003) Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci USA 100:6081–6086

    Article  CAS  PubMed  Google Scholar 

  31. Mayginnes JP, Reed SE, Berg HG, Staley EM, Pintel DJ, Tullis GE (2006) Quantitation of encapsidated recombinant adeno-associated virus DNA in crude cell lysates and tissue culture medium by quantitative, real-time PCR. J Virol Methods 137:193–204

    Article  CAS  PubMed  Google Scholar 

  32. Hauck B, Xiao W (2003) Characterization of tissue tropism determinants of adeno-associated virus type 1. J Virol 77:2768–2774

    Article  CAS  PubMed  Google Scholar 

  33. Maguire CA, Meijer DH, Leroy SG, Tierney LA, Broekman ML, Costa FF, Breakefield XO, Stemmer-Rachamimov A, Sena-Esteves M (2008) Preventing growth of brain tumors by creating a zone of resistance. Mol Ther 16:1695–1702

    Google Scholar 

  34. Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  35. Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K, Von der Lieth CW, King JA, Kleinschmidt JA (2003) Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081

    Article  CAS  PubMed  Google Scholar 

  36. Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKenna M, Ferkol T, Flotte T, Muzyczka N (2000) Mutational analysis of the adeno-associated virus type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J Virol 74:8635–8647

    Article  CAS  PubMed  Google Scholar 

  37. Ward P, Walsh CE (2009) Chimeric AAV cap sequences alter gene transduction. Virology 386:237–248

    Article  CAS  PubMed  Google Scholar 

  38. Cearley CN, Vandenberghe LH, Parente MK, Carnish ER, Wilson JM, Wolfe JH (2008) Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol Ther 16:1710–1718

    Article  CAS  PubMed  Google Scholar 

  39. Cearley CN, Wolfe JH (2006) Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol Ther 13:528–537

    Article  CAS  PubMed  Google Scholar 

  40. Sondhi D, Hackett NR, Peterson DA, Stratton J, Baad M, Travis KM, Wilson JM, Crystal RG (2007) Enhanced survival of the LINCL mouse following CLN2 gene transfer using the rh. 10 rhesus macaque-derived adeno-associated virus vector. Mol Ther 15:481–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Young Investigator Award from the Alliance for Cancer Gene Therapy (MSE), NIH T32CA073479 (CM), and NIH P50CA86355 (MSE). We would like to acknowledge Dr. Rakesh Jain and the Edwin L. Steele Laboratory at MGH for support during this study. We would like to thank the MGH Nucleic Acid Quantitation Core facility supported by NINDS grant #P30NS4577 for the use of the thermal cyclers for quantitative PCR, and Drs. Johan Skog and Robert Carter for kindly providing the primary glioblastoma cells. We thank Johanna Niers for help with cell culture. We would like to thank Dr. Xandra O. Breakefield for advice and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Sena-Esteves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 26 kb)

(PDF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maguire, C.A., Gianni, D., Meijer, D.H. et al. Directed evolution of adeno-associated virus for glioma cell transduction. J Neurooncol 96, 337–347 (2010). https://doi.org/10.1007/s11060-009-9972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9972-7

Keywords

Navigation