Skip to main content
Log in

Allelic loss on chromosomes 1p32, 9p21, 13q14, 16q22, 17p, and 22q12 in meningiomas associated with meningioangiomatosis and pure meningioangiomatosis

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Meningioangiomatosis (MA) is a rare lesion appearing sporadically or as a part of neurofibromatosis 2. The occurrences of meningiomas arising from MA (MA-M) have raised doubts about the traditional concept of a hamartomatous origin for MA. Cytogenetic or molecular studies on MA, with or without meningiomas, are limited because of the rarity of MA. The current study was to evaluate the loss of heterozygosity (LOH) in seven cases of MA-M and two cases of pure MA. LOH on six chromosomes (1p32, 9p21, 13q14, 16q22, 17p, and 22q12) were investigated using 13 sets of microsatellite markers, including D1S193, D1S463, D22S193, D22S929, D22S282, TP53, D17S796, D16S421, D16S512, D13S118, D13S153, D9S162, and D9S104. PCR was performed using each marker and polymorphic analysis was accomplished by silver staining. Immunohistochemical stain for Ki-67 was carried out and labeling index was measured by using a semiquantitative manual counting method. The meningioma portions of MA-Ms showed LOH for loci on chromosomes 22q12, 9p21, and 1p32 in 57.1% (4/7), 28.6% (2/7), and 28.6% (2/7) of cases, respectively. The MA portions of MA-M had a LOH for loci on 22q12 in 28.6% (2/7) of cases, whereas each pure MA harbored one LOH on either chromosome 22q12 or 9p21. The proliferation indices of MA-Ms were significantly higher in the meningioma than in the MA components. Our data suggest that both the meningioma and the MA undergo the same overlapping clonal process, with the MA-M while undergoing additional genetic alterations that confer a greater proliferative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aizpuru RN, Quencer RM, Norenberg M, Altman N, Smirniotopoulos J (1991) Meningioangiomatosis: clinical, radiologic, and histopathologic correlation. Radiology 179:819–821

    PubMed  CAS  Google Scholar 

  2. Chakrabarty A, Franks AJ (1999) Meningioangiomatosis: a case report and review of the literature. Br J Neurosurg 13:167–173. doi:10.1080/02688699943934

    Article  PubMed  CAS  Google Scholar 

  3. Giangaspero F, Guiducci A, Lenz FA, Mastronardi L, Burger PC (1999) Meningioma with meningioangiomatosis: a condition mimicking invasive meningiomas in children and young adults: report of two cases and review of the literature. Am J Surg Pathol 23:872–875. doi:10.1097/00000478-199908000-00002

    Article  PubMed  CAS  Google Scholar 

  4. Takeshima Y, Amatya VJ, Nakayori F, Nakano T, Sugiyama K, Inai K (2002) Meningioangiomatosis occurring in a young male without neurofibromatosis: with special reference to its histogenesis and loss of heterozygosity in the NF2 gene region. Am J Surg Pathol 26:125–129. doi:10.1097/00000478-200201000-00017

    Article  PubMed  Google Scholar 

  5. Sinkre P, Perry A, Cai D et al (2001) Deletion of the NF2 region in both meningioma and juxtaposed meningioangiomatosis: case report supporting a neoplastic relationship. Pediatr Dev Pathol 4:568–572. doi:10.1007/s10024001-0086-2

    Article  PubMed  CAS  Google Scholar 

  6. Perry A, Kurtkaya-Yapicier O, Scheithauer BW et al (2005) Insights into meningioangiomatosis with and without meningioma: a clinicopathologic and genetic series of 24 cases with review of the literature. Brain Pathol 15:55–65

    Article  PubMed  Google Scholar 

  7. Stemmer-Rachamimov AO, Horgan MA, Taratuto AL et al (1997) Meningioangiomatosis is associated with neurofibromatosis 2 but not with somatic alterations of the NF2 gene. J Neuropathol Exp Neurol 56:485–489. doi:10.1097/00005072-199705000-00004

    Article  PubMed  CAS  Google Scholar 

  8. Wang Y, Gao X, Yao ZW et al (2006) Histopathological study of five cases with sporadic meningioangiomatosis. Neuropathology 26:249–256. doi:10.1111/j.1440-1789.2006.00668.x

    Article  PubMed  CAS  Google Scholar 

  9. Ueki K, Wen-Bin C, Narita Y, Asai A, Kirino T (1999) Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Cancer Res 59:5995–5998

    PubMed  CAS  Google Scholar 

  10. Wellenreuther R, Kraus JA, Lenartz D et al (1995) Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am J Pathol 146:827–832

    PubMed  CAS  Google Scholar 

  11. Lee JY, Finkelstein S, Hamilton RL, Rekha R, King JT Jr, Omalu B (2004) Loss of heterozygosity analysis of benign, atypical, and anaplastic meningiomas. Neurosurgery 55:1163–1173. doi:10.1227/01.NEU.0000141081.07086.A0

    Article  PubMed  Google Scholar 

  12. Weber RG, Boström J, Wolter MG et al (1997) Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94:14719–14724. doi:10.1073/pnas.94.26.14719

    Article  PubMed  CAS  Google Scholar 

  13. Kim NR, Choe G, Shin SH et al (2002) Childhood meningiomas associated with meningioangiomatosis: report of five cases and literature review. Neuropathol Appl Neurobiol 28:48–56. doi:10.1046/j.1365-2990.2002.00365.x

    Article  PubMed  CAS  Google Scholar 

  14. Seo DW, Park MS, Hong SB, Hong SC, Suh YL (2003) Combined temporal and frontal epileptogenic foci in meningioangiomatosis. Eur Neurol 49:184–186. doi:10.1159/000069076

    Article  PubMed  Google Scholar 

  15. Martin-Laurent F, Philippot L, Hallet S et al (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359. doi:10.1128/AEM.67.5.2354-2359.2001

    Article  PubMed  CAS  Google Scholar 

  16. Leone PE, Bello MJ, de Campos JM et al (1999) NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic meningiomas. Oncogene 18:2231–2239. doi:10.1038/sj.onc.1202531

    Article  PubMed  CAS  Google Scholar 

  17. Peyrard M, Parveneh S, Lagercrantz S et al (1998) Cloning, expression pattern, and chromosomal assignment to 16q23 of the human gamma-adaptin gene (ADTG). Genomics 50:275–280. doi:10.1006/geno.1998.5289

    Article  PubMed  CAS  Google Scholar 

  18. Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW (2002) A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12:183–190

    PubMed  CAS  Google Scholar 

  19. Prayson RA (1995) Meningioangiomatosis. A clinicopathologic study including MIB1 immunoreactivity. Arch Pathol Lab Med 119:1061–1064

    PubMed  CAS  Google Scholar 

  20. Roggendorf W, Schuster T, Peiffer J (1987) Proliferative potential of meningiomas determined with the monoclonal antibody Ki-67. Acta Neuropathol 73:361–364. doi:10.1007/BF00688260

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This article was partly supported by Gachon Biomedical Research Institutional Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeon-Lim Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, N.R., Cho, S.J. & Suh, YL. Allelic loss on chromosomes 1p32, 9p21, 13q14, 16q22, 17p, and 22q12 in meningiomas associated with meningioangiomatosis and pure meningioangiomatosis. J Neurooncol 94, 425–430 (2009). https://doi.org/10.1007/s11060-009-9879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9879-3

Keywords

Navigation