Skip to main content

Advertisement

Log in

c-Met-targeted RNA interference inhibits growth and metastasis of glioma U251 cells in vitro

  • Laboratory investigation - human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Angiogenesis plays an essential role in tumor growth and metastasis and is a promising target for cancer therapy. c-Met, a receptor tyrosine kinase, and its ligand, hepatocyte growth factor (HGF), are critical in cellular proliferation, motility, invasion, and angiogenesis. The present study was designed to determine the role of c-Met in growth and metastasis of glioma U251 cells using RNA interference (RNAi) technology in vitro. We constructed three kinds of shRNA expression vectors aiming at the c-Met gene, then transfected them into glioma U251 cells by lipofectamineTM 2000. The level of c-Met mRNA was investigated by real-time polymerse chain reaction (RT-PCR). The protein expression of c-Met was observed by immunofluoresence staining and western blotting. U251 cell growth and adherence was detected by methyl thiazole tetrazolium assay. The apoptosis of U251 cells was examined with a flow cytometer. The adherence, invasion, and in vitro angiogenesis assays of U251 cells were done. We got three kinds of c-Met specific shRNA expression vectors which could efficiently inhibit the growth and metastasis of U251 cells and the expression of c-Met in U251 cells. RT-PCR, immunofluoresence staining and western blotting showed that inhibition rate for c-Met expression was up to 90%, 79% and 85%, respectively. The expression of c-Met can be inhibited by RNA interference in U251 cells, which can inhibit the growth and metastasis of U251 cell and induce cell apoptosis. These results indicate that RNAi of c-Met can be an effective antiangiogenic strategy for glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HGF:

Hepatocyte growth factor

c-Met:

Hepatocyte growth factor receptor

RNAi:

RNA interference

RPMI:

Roswell park memorial institute

PBS:

Phosphate-buffered saline

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

HRP:

Horseradish peroxidase

NC:

Nitrocellulose

MTT:

Methyl thiazole tetrazolium

References

  1. Ramos-Nino ME, Blumen SR, Sabo-Attwood T, Pass H, Carbone M, Testa JR, Altomare DA, Mossman BT (2008) HGF mediates cell proliferation of human mesothelioma cells through a PI3 K/MEK5/Fra-1 pathway. Am J Respir Cell Mol Biol 38:209–217. doi:10.1165/rcmb.2007-0206OC

    Article  PubMed  CAS  Google Scholar 

  2. Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225:1–26. doi:10.1016/j.canlet.2004.09.044

    Article  PubMed  CAS  Google Scholar 

  3. Roccisana J, Reddy V, Vasavada RC, Gonzalez-Pertusa JA, Magnuson MA, Garcia-Ocaña A (2005) Targeted inactivation of hepatocyte growth factor receptor c-Met in (beta)-cells leads to defective insulin secretion and GLUT-2 downregulation without alteration of (beta)-cell mass. Diabetes 54:2090–2102. doi:10.2337/diabetes.54.7.2090

    Article  PubMed  CAS  Google Scholar 

  4. Giordano S, Ponzetto C, Di Renzo MF, Cooper CS, Comoglio PM (1989) Tyrosine kinase receptor indistinguishable from the c-Met protein. Nature 339:155–156. doi:10.1038/339155a0

    Article  PubMed  CAS  Google Scholar 

  5. Camp RL, Rimn EB, Rimm DL (1999) Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 86:2259–2265. doi:10.1002/(SICI)1097-0142(19991201)86:11<2259::AID-CNCR13>3.0.CO;2-2

  6. Cheng HL, Liu HS, Lin YJ, Chen HH, Hsu PY, Chang TY, Ho CL, Tzai TS, Chow NH (2005) Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder. Br J Cancer 92:1906–1914. doi:10.1038/sj.bjc.6602593

    Article  PubMed  CAS  Google Scholar 

  7. Chu SH, Yuan XH, Li ZQ, Jiang PC, Zhang J (2006) C-Met antisense oligodeoxynucleotide inhibits growth of glioma cells. Surg Neurol 65:533–538. doi:10.1016/j.surneu.2005.11.024

    Article  PubMed  Google Scholar 

  8. Chu SH, Yuan XH, Jiang PC, Li ZQ, Zhang J, Wen ZH, Zhao SY, Chen XJ, Cao CJ (2005) The expression of hepatocyte growth factor and its receptor in brain astrocytomas. Zhonghua Yi Xue Za Zhi 85:835–838

    PubMed  CAS  Google Scholar 

  9. Chu SH, Zhu ZA, Yuan XH, Li ZQ, Jiang PC (2006) In vitro and in vivo potentiating the cytotoxic effect of radiation on human U251 gliomas by the c-Met antisense oligodeoxynucleotides. J Neurooncol 80:143–149. doi:10.1007/s11060-006-9174-5

    Article  PubMed  CAS  Google Scholar 

  10. Chu SH, Ma YB, Zhang H, Feng DF, Zhu ZA, Li ZQ, Yuan XH (2007) Hepatocyte growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells. J Neurooncol 85:33–38. doi:10.1007/s11060-007-9387-2

    Article  PubMed  CAS  Google Scholar 

  11. Chu SH, Ma YB, Zhu ZA, Zhang H, Feng DF, Li ZQ, Yuan XH (2007) Radiation-enhanced hepatocyte growth factor secretion in malignant glioma cell lines. Surg Neurol 68:610–613. doi:10.1016/j.surneu.2006.12.050

    Article  Google Scholar 

  12. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi:10.1038/35053110

    Article  PubMed  CAS  Google Scholar 

  13. Cioca DP, Aoki Y, Kiyosawa K (2003) RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 10:125–133. doi:10.1038/sj.cgt.7700544

    Article  PubMed  CAS  Google Scholar 

  14. Mukohara T, Civiello G, Davis IJ, Taffaro ML, Christensen J, Fisher DE, Johnson BE, Jänne PA (2005) Inhibition of the met receptor in mesothelioma. Clin Cancer Res 11:8122–8130. doi:10.1158/1078-0432.CCR-05-1191

    Article  PubMed  CAS  Google Scholar 

  15. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE (2004) Critical role of CDK2 for melanoma growth linked to its melanocytespecific transcriptional regulation by MITF. Cancer Cell 6:565–576. doi:10.1016/j.ccr.2004.10.014

    Article  PubMed  CAS  Google Scholar 

  16. Moriyama T, Kataoka H, Hamasuna R, Yokogami K, Uehara H, Kawano H, Goya T, Tsubouchi H, Koono M, Wakisaka S (1998) Up-regulation of vascular endothelial growth factor induced by hepatocyte growth factor/scatter factor stimulation in human glioma cells. Biochem Biophys Res Commun 249:73–77. doi:10.1006/bbrc.1998.9078

    Article  PubMed  CAS  Google Scholar 

  17. Jiang Y, Xu W, Lu J, He F, Yang X (2001) Invasiveness of hepatocellular carcinoma cell lines: contribution of hepatocyte growth factor, c-met, and transcription factor ets-1. Biochem Biophys Res Commun 286:1123–1130. doi:10.1006/bbrc.2001.5521

    Article  PubMed  CAS  Google Scholar 

  18. Wang S, Liu H, Ren L, Pan Y, Zhang Y (2008) Inhibiting colorectal carcinoma growth and metastasis by blocking the expression of VEGF using RNA interference. Neoplasia 10:399–407

    PubMed  CAS  Google Scholar 

  19. Uemura K, Takao S, Aikou T (1998) In vitro determination of basement membrane invasion predicts liver metastases in human gastrointestinal carcinoma. Cancer Res 58:3727–3731

    PubMed  CAS  Google Scholar 

  20. Jin M, He S, Wörpel V, Ryan SJ, Hinton DR (2000) Promotion of adhesion and migration of RPE cells to provisional extracellular matrices by TNF-alpha. Invest Ophthalmol Vis Sci 41:4324–4332

    PubMed  CAS  Google Scholar 

  21. Wang SM, Zhu J, Pan LF, Liu YK (2008) Inhibitory effect of dimeric β peptide on the recurrence and metastasis of hepatocellular carcinoma in vitro and in mice. World J Gastroenterol 14:3054–3058. doi:10.3748/wjg.14.3054

    Article  PubMed  CAS  Google Scholar 

  22. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739. doi:10.1038/nrc905

    Article  PubMed  CAS  Google Scholar 

  23. Orgaz JL, Martínez-Poveda B, Fernández-García NI, Jiménez B (2008) Following up tumour angiogenesis: from the basic laboratory to the clinic. Clin Transl Oncol 10:468–477. doi:10.1007/s12094-008-0235-4

    Article  PubMed  Google Scholar 

  24. Zhang PH, Zou L, Tu ZG (2006) RNAi-hTERT inhibition hepatocellular carcinoma cell proliferation via decreasing telomerase activity. J Surg Res 131:143–149. doi:10.1016/j.jss.2005.09.017

    Article  PubMed  CAS  Google Scholar 

  25. Kang CS, Pu PY, Li YH, Zhang ZY, Qiu MZ, Huang Q, Wang GX (2005) An in vitro study on the suppressive effect of glioma cell growth induced by plasmid-based small interference RNA (siRNA) targeting human epidermal growth factor receptor. J Neurooncol 74:267–273. doi:10.1007/s11060-004-8322-z

    Article  PubMed  CAS  Google Scholar 

  26. Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, Chen J, Wang X, Ruslim L, Blake R, Lipson KE, Ramphal J, Do S, Cui JJ, Cherrington JM, Mendel DB (2003) A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63:7345–7355

    PubMed  CAS  Google Scholar 

  27. Bauer TW, Fan F, Liu W, Johnson M, Parikh NU, Parry GC, Callahan J, Mazar AP, Gallick GE, Ellis LM (2005) Insulin like growth factor-I-mediated migration and invasion of human colon carcinoma cells requires activation of c-Met and urokinase plasminogen activator receptor. Ann Surg 241:748–756

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank professor Hong Wang at Henry Ford Hospital for critical reading of the paper. This work was supported by a grant 07JWYQ03 from the Training Excellent Youth Teacher Scientific Research Foundation of University of Shanghai, and a grant 07XYQ01 from the Excellent Youth Teacher Scientific Research Foundation of Shanghai Jiao Tong University of School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Bin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, SH., Feng, DF., Zhang, H. et al. c-Met-targeted RNA interference inhibits growth and metastasis of glioma U251 cells in vitro. J Neurooncol 93, 183–189 (2009). https://doi.org/10.1007/s11060-008-9772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9772-5

Keywords

Navigation