Skip to main content
Log in

An acidic environment changes cyclin D1 localization and alters colony forming ability in gliomas

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The human glioma cell lines, U87 and T98G, were evaluated for their ability to survive and form colonies in an acidic environment of pHext 6.0. In contrast to U87, which showed an 80–90% survival rate, only 40% of T98G cells survived 6 days at pHext 6.0 and lost their colony forming ability when returned to a normocidic environment. Although both U87 and T98G cells maintain an intracellular pH (pHi) of 7.0 at pHext 6.0 and arrest mostly in G1 phase of the cell cycle, only T98G demonstrated a major loss of cyclin D1 that was prevented by the proteasome inhibitor MG132. Colony forming ability was restored by stably transfecting T98G cells with a cyclin D1-expressing plasmid. Both U87 and T98G cells demonstrated increased cytoplasmic localization of cyclin D1 during exposure at pHext 6.0. Upon prolonged (24 h) incubation at pHext 6.0, nuclear cyclin D1 was nearly absent in T98G in contrast to U87 cells. Thus, an acidic environment triggers cytoplasmic localization and proteasomal degradation of cyclin D1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alvord EC Jr (1992) Is necrosis helpful in the grading of gliomas? Editorial opinion. J Neuropathol Exp Neurol 51(2):127–132

    Article  PubMed  Google Scholar 

  2. Miller CR, Dunham CP, Scheithauer BW, Perry A (2006) Significance of necrosis in grading of oligodendroglial neoplasms: a clinicopathologic and genetic study of newly diagnosed high-grade gliomas. J Clin Oncol 24(34):5419–5426

    Article  PubMed  Google Scholar 

  3. Gorin F, Harley W, Schnier J, Lyeth B, Jue T (2004) Perinecrotic glioma proliferation and metabolic profile within an intracerebral tumor xenograft. Acta Neuropathol Berl 107(3):235–244

    Article  PubMed  CAS  Google Scholar 

  4. Bussink J, Kaanders JH, van der Kogel AJ (2003) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67(1):3–15

    Article  PubMed  Google Scholar 

  5. Reichert M, Steinbach JP, Supra P, Weller M (2002) Modulation of growth and radiochemosensitivity of human malignant glioma cells by acidosis. Cancer 95(5):1113–1119

    Article  PubMed  CAS  Google Scholar 

  6. McLean LA, Zia S, Gorin FA, Cala PM (1999) Cloning and expression of the Na +/H + exchanger from Amphiuma RBCs: resemblance to mammalian NHE1. Am J Physiol 276(5 Pt 1):C1025–1037

    PubMed  CAS  Google Scholar 

  7. Izumi H, Torigoe T, Ishiguchi H, Uramoto H, Yoshida Y, Tanabe M, Ise T, Murakami T, Yoshida T, Nomoto M, Kohno K (2003) Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev 29(6):541–549

    Article  PubMed  CAS  Google Scholar 

  8. Aviv A (1996) The links between cellular Ca2 + and Na +/H + exchange in the pathophysiology of essential hypertension. Am J Hypertens 9(7):703–707

    Article  PubMed  CAS  Google Scholar 

  9. Park HJ, Lyons JC, Ohtsubo T, Song CW (1999) Acidic environment causes apoptosis by increasing caspase activity. Br J Cancer 80(12):1892–1897

    Article  PubMed  CAS  Google Scholar 

  10. Williams AC, Collard TJ, Paraskeva C (1999) An acidic environment leads to p53 dependent induction of apoptosis. Oncogene 18(21):3199–3204

    Article  PubMed  CAS  Google Scholar 

  11. Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18(22):2699–2711

    Article  PubMed  CAS  Google Scholar 

  12. Alt JR, Cleveland JL, Hannink M, Diehl JA (2000) Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14(24):3102–3114

    Article  PubMed  CAS  Google Scholar 

  13. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12(22):3499–3511

    Article  PubMed  CAS  Google Scholar 

  14. Kwak YT, Li R, Becerra CR, Tripathy D, Frenkel EP, Verma UN (2005) IkappaB kinase alpha regulates subcellular distribution and turnover of cyclin D1 by phosphorylation. J Biol Chem 280(40):33945–33952

    Article  PubMed  CAS  Google Scholar 

  15. Arato-Ohshima T, Sawa H (1999) Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int J Cancer 83(3):387–392

    Article  PubMed  CAS  Google Scholar 

  16. Sallinen SL, Sallinen PK, Kononen JT, Syrjakoski KM, Nupponen NN, Rantala IS, Helen PT, Helin HJ, Haapasalo HK (1999) Cyclin D1 expression in astrocytomas is associated with cell proliferation activity and patient prognosis. J Pathol 188(3):289–293

    Article  PubMed  CAS  Google Scholar 

  17. Hegde M, Roscoe J, Cala P, Gorin F (2004) Amiloride kills malignant glioma cells independent of its inhibition of the sodium-hydrogen exchanger. J Pharmacol Exp Ther 310(1):67–74

    Article  PubMed  CAS  Google Scholar 

  18. Kaiser A, Nishi K, Gorin FA, Walsh DA, Bradbury EM, Schnier JB (2001) The cyclin-dependent kinase (CDK) inhibitor flavopiridol inhibits glycogen phosphorylase. Arch Biochem Biophys 386(2):179–187

    Article  PubMed  CAS  Google Scholar 

  19. McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM (2000) Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 278(4):C676–688

    PubMed  CAS  Google Scholar 

  20. Boyarsky G, Ganz M, Sterzel R, Boron W (1988) pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO3. Am J Physiol Cell Physiol 255(6 Pt 1):C844–C856

    CAS  Google Scholar 

  21. Boyarsky G, Ransom B, Schlue W, Davis M, Boron W (1993) Intracellular pH regulation in single cultured astrocytes from rat forebrain. Glia 8(4):241–248

    Article  PubMed  CAS  Google Scholar 

  22. Crissman HA, Tobey RA (1974) Cell-cycle analysis in 20 minutes. Science 184(143):1297–1298

    Article  PubMed  CAS  Google Scholar 

  23. Vaupel PW, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41(5):2008–2013

    PubMed  CAS  Google Scholar 

  24. Won KA, Xiong Y, Beach D, Gilman MZ (1992) Growth-regulated expression of D-type cyclin genes in human diploid fibroblasts. Proc Natl Acad Sci USA 89(20):9910–9914

    Article  PubMed  CAS  Google Scholar 

  25. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350(6318):512–515

    Article  PubMed  CAS  Google Scholar 

  26. Diehl JA, Zindy F, Sherr CJ (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11(8):957–972

    Article  PubMed  CAS  Google Scholar 

  27. Matsushime H, Ewen ME, Strom DK, Kato JY, Hanks SK, Roussel MF, Sherr CJ (1992) Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71(2):323–334

    Article  PubMed  CAS  Google Scholar 

  28. Lukas J, Bartkova J, Rohde M, Strauss M, Bartek J (1995) Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 15(5):2600–2611

    PubMed  CAS  Google Scholar 

  29. Nishi K, Schnier JB, Bradbury EM (1998) The accumulation of cyclin-dependent kinase inhibitor p27kip1 is a primary response to staurosporine and independent of G1 cell cycle arrest. Exp Cell Res 243(2):222–231

    Article  PubMed  CAS  Google Scholar 

  30. Coqueret O (2002) Linking cyclins to transcriptional control. Gene 299(1–2):35–55

    Article  PubMed  CAS  Google Scholar 

  31. Ewen ME, Lamb J (2004) The activities of cyclin D1 that drive tumorigenesis. Trends Mol Med 10(4):158–162

    Article  PubMed  CAS  Google Scholar 

  32. Germain D, Russell A, Thompson A, Hendley J (2000) Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286. J Biol Chem 275(16):12074–12079

    Article  PubMed  CAS  Google Scholar 

  33. Zou Y, Ewton DZ, Deng X, Mercer SE, Friedman E (2004) Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288. J Biol Chem 279(26):27790–27798

    Article  PubMed  CAS  Google Scholar 

  34. Feng Q, Sekula D, Müller R, Freemantle SJ, Dmitrovsky E (2007) Uncovering residues that regulate cyclin D1 proteasomal degradation. Oncogene 26(35):5098–106

    Article  PubMed  CAS  Google Scholar 

  35. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, Ali AM, Omar AR, Yusoff K, Lila MA, Othman F (2007) Molecular genetic analysis of BAX and cyclin D1 genes in patients with malignant glioma. Neurol Res 29(3):239–42

    Article  PubMed  CAS  Google Scholar 

  36. Nakamura M, Konishi N, Hiasa Y, Tsunoda S, Nakase H, Tsuzuki T, Aoki H, Sakitani H, Inui T, Sakaki T (1998) Frequent alterations of cell-cycle regulators in astrocytic tumors as detected by molecular genetic and immunohistochemical analyses. Brain Tumor Pathol 15(2):83–8

    Article  PubMed  CAS  Google Scholar 

  37. Bevensee MO, Apkon M, Boron WF (1997) Intracellular pH regulation in cultured astrocytes from rat hippocampus. II. Electrogenic Na/HCO3 cotransport. J. Gen Physiol 110(4):467–483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by grant NIH NS40489 (F.G.), by the University of California Cancer Research Coordinating Committee (F.G.) and by funds from the UC Davis Cancer center (J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim B. Schnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnier, J.B., Nishi, K., Harley, W.R. et al. An acidic environment changes cyclin D1 localization and alters colony forming ability in gliomas. J Neurooncol 89, 19–26 (2008). https://doi.org/10.1007/s11060-008-9591-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9591-8

Keywords

Navigation