Skip to main content

Advertisement

Log in

ATRA-inhibited proliferation in glioma cells is associated with subcellular redistribution of β-catenin via up-regulation of Axin

  • Lab. Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Retinoic acid (RA) is a major chemopreventive agent which exerts strong anti-tumor activity partly by trans-repressing the Wnt/β-catenin signaling pathway in some tumor cell lines. However, the definite mechanism of RA trans-repression of the Wnt/β-catenin signaling pathway has not been elucidated clearly. In this work, we found that all-trans retinoic acid (ATRA) significantly inhibited proliferation of glioma cells, accompanied by up-regulation of expression of Axin and altered subcellular distribution of β-catenin. Transfecting C6 cells with rAxin further confirmed that increased expression of Axin is obligate for inhibition of proliferation and the increase of the cytoplasmic β-catenin. Our results suggested that Axin might play an important role in RA-mediated anti-proliferative effects of glioma cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Evans TR, Kaye SB (1999) Retinoic acids: present role and future potential. Br J Cancer 80:1–8

    Article  PubMed  CAS  Google Scholar 

  2. Hong WK, Sporn MB (1997) Recent advances in chemoprevention of cancer. Science 278:1073–1077

    Article  PubMed  CAS  Google Scholar 

  3. Lotan R (1996) Retinoic acids in cancer chemoprevention. FASEB J 10:1031–1039

    PubMed  CAS  Google Scholar 

  4. Yung WK, Kyritsis AP et al (1996) Treatment of recurrent malignant gliomas with high-dose 13-cis-retinoic acid. Clin Cancer Res 2:1931–1935

    PubMed  CAS  Google Scholar 

  5. Kaba SJ, Kyritsis AP et al (1997) The treatment of recurrent cerebral gliomas with all-trans-retinoic acid (tretinoin). J Neuro-Oncol 341:145–151

    Article  Google Scholar 

  6. Phuphanich S, Scott C, Fischbach AJ et al (1997) All-trans-retinoic acid: a phase II radiation therapy oncology group study (RTOG 91–13) in patients with recurrent malignant astrocytoma. J Neuro-Oncol 34:193–200

    Article  CAS  Google Scholar 

  7. See S, Levin VA et al (2004) 13-cis-Retinoic acid in the treatment of recurrent glioblastoma multiforme. J Neuro-Oncol 6:253–258

    Article  CAS  Google Scholar 

  8. Rutka JT, De Armond SJ et al (1998) Effect of retinoic acids on the proliferation, morphology and expression of glial fibrillary acidic protein of an anaplastic astrocytoma cell line. Int J Cancer 42:419–427

    Article  Google Scholar 

  9. Yung WK, Lotan R, Lee P et al (1989) Modulation of growth and epidermal growth factor receptor activity by retinoic acid in human glioma cells. Cancer Res 49:1014–1019

    PubMed  CAS  Google Scholar 

  10. Alvarez-Dolado M, González-Sancho JM, Navarro-Yubero C et al (1999) Retinoic acid and 1,25-dihydroxyvitamin D3 inhibit tenascin-C expression in rat glioma C6 cells. J Neurosci Res 58:293–300

    Article  PubMed  CAS  Google Scholar 

  11. López-Barahona M, Miñano M, Mira E et al (1993) Retinoic acid post-transcriptionally up-regulates proteolipid protein gene expression in C6 glioma cells. J Biol Chem 268:25617–25623

    PubMed  Google Scholar 

  12. Rodts GE, Black KL et al (1994) Trans retinoic acid inhibits in vivo tumour growth of C6 glioma in rats: effect negatively influenced by nerve growth factor. Neurol Res 16:184–186

    PubMed  CAS  Google Scholar 

  13. Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Genes 328:1–16

    CAS  Google Scholar 

  14. Easwaran V, Pishvaian M, Byers SW et al (1999) Cross-regulation of β-catenin-LEF/TCF and retinoic acid signaling pathways. Curr Biol 9:1415–1418

    Article  PubMed  CAS  Google Scholar 

  15. Nicke B, Kaiser A, Wiedenmann B et al (1999) Retinoic acid receptor alpha mediates growth inhibition by retinoic acids in human colon carcinoma HT29 cells. Biochem Biophys Res Commun 261:572–577

    Article  PubMed  CAS  Google Scholar 

  16. Shah S, Pishvaian MJ, Easwaran V et al (2002) The role of cadherin, β-catenin, and AP-1 in Retinoic acid-regulated carcinoma cell differentiation and proliferation. J Biol Chem 277:30887–30891

    Article  Google Scholar 

  17. Shah S, Hecht A, Pestell R et al (2003) Trans-repression of β-catenin activity by nuclear receptors. J Biol Chem 278:48137–48145

    Article  PubMed  CAS  Google Scholar 

  18. Cox RT, Pai LM, Miller JR et al (1999) Membrane-tethered Drosophila Armadillo cannot transduce wingless signal on its own. Development 126:1327–1335

    PubMed  CAS  Google Scholar 

  19. Cong F, Schweizer L et al (2003) Requirement for a nuclear function of β-catenin in Wnt signaling. Mol Cell Biol 23:8462–8470

    Article  PubMed  CAS  Google Scholar 

  20. Moon RT, Kohn AD, De Ferrari GV et al (2004) Wnt and beta-catenin signalling: diseases and therapies. Nat Rev Genet 5:689–699

    Article  Google Scholar 

  21. Zeng L, Fagotto F, Zhang T et al (1997) The mouse fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192

    Article  PubMed  CAS  Google Scholar 

  22. Tolwinski NS, Wehrli M, Rives A et al (2003) Wg/Wnt signal can be transmitted through arrow/Lrp5, 6 and Axin independently of Zw3/Gsk3 beta activity. Dev Cell 4:407–418

    Article  PubMed  CAS  Google Scholar 

  23. Tolwinski NS, Wieschaus E (2001) Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan. Development 128:2107–2117

    PubMed  CAS  Google Scholar 

  24. Cong F, Varmus H (2004) Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin. Proc Natl Acad Sci 101:2882–2887

    Article  PubMed  CAS  Google Scholar 

  25. Zhang LY, Li Qing et al (2005) Construction of the eukaryotic expression vector pIRES2-EGFP-rAxin and its expression in glioma cells. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 21:408–410

    PubMed  Google Scholar 

  26. Chambon P (1994) The retinoid signaling pathway: molecular and genetic analyses. Semin Cell Biol 5:115–215

    Article  PubMed  CAS  Google Scholar 

  27. Carpentier AF, Leonard N, Lacombe J et al (1999) Retinoic acid modulates RAR alpha and RAR beta receptors in human glioma cell lines. Anticancer Res 19:3189–3192

    PubMed  CAS  Google Scholar 

  28. Heytman RA, Mangelsdorf J, Dyck JA et al (1992) 9-Cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 68:397–406

    Article  Google Scholar 

  29. Biena M (2002) The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3:328–338

    Article  Google Scholar 

  30. Henderson B, Fagotto F et al (2002) The ins and outs of APC and beta-catenin nuclear transport. EMBO Rep 3:834–839

    Article  PubMed  CAS  Google Scholar 

  31. Wiechens N, Fagotto F (2001) CRM1- and Ran-independent nuclear export of beta-catenin. Curr Biol 11:18–27

    Article  PubMed  CAS  Google Scholar 

  32. Neo SY, Zhang Y, Yaw LP et al (2000) Axin-induced apoptosis depends on the extent of its JNK activation and its ability to down-regulate β-catenin levels. Biochem Biophys Res Commun 272:144–150

    Article  PubMed  CAS  Google Scholar 

  33. Zhang LY, Li Qing et al (2006) Biological effects of Axin gene expression in glioma C6 cells. Modern Oncol 14:521–524

    CAS  Google Scholar 

  34. Lee E, Salic A, Kruger R et al (2003) The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol E10

  35. Hakamura T, Hamada F, Ishidate T (1998) Axin, an inhibitor of Wnt signaling pathway, interacts with beta-catenin, GSK3beta and APC and reduces the beta-catenin level. Genes Cells 3:395–403

    Article  Google Scholar 

  36. Hart MJ, Los Santos RD, Albert IN et al (1998) Downregulation of β-catenin by human Axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol 8:573–581

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Laboratory of Cancer Biology grant, China (CBSKL 2005004). We thank Dr Zhizhong Wang at the Department of Epidemiology of the Fourth Military Medical University for assistance with Statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Zhang, F., Zhao, D. et al. ATRA-inhibited proliferation in glioma cells is associated with subcellular redistribution of β-catenin via up-regulation of Axin. J Neurooncol 87, 271–277 (2008). https://doi.org/10.1007/s11060-008-9518-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-008-9518-4

Keywords

Navigation