Skip to main content

Advertisement

Log in

Elevation of osteopontin levels in brain tumor cells reduces burden and promotes survival through the inhibition of cell dispersal

  • Lab. investigation - human/animal tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Osteopontin (OPN) is a pleotrophic molecule that has been associated with multiple disorders of the central nervous system (CNS). Its roles in CNS malignancy are unclear but suggest that higher levels of OPN expression correlate with increased tumor grade and increased migratory capacity of tumor cells. In this study OPN cDNA was cloned into a retroviral vector and used to infect F98 Fischer rat-derived glioma cells and U87 human-derived glioblastoma multiforme (GBM) cells in vitro. Cells expressing high levels of OPN migrated less distance than control cells in vitro. This effect was not RGD mediated, but was reversed in the presence of c-Jun N-terminal kinase (JNK) inhibitor suggesting that JNK1 is an essential component of a negative feedback loop affecting OPN activated signaling cascades. Implantation of tumor cells expressing high levels of OPN into adult Fischer rats and nude rats resulted in morphologically distinct tumors and prolonged host survival relative to controls. We propose that local produced, high level OPN expression limits the malignant character of glioma cells and that the downstream mechanisms involved represent pathways that may have therapeutic value in the treatment of human CNS malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agnihotri F, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinases-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276:28261–28267

    Article  PubMed  CAS  Google Scholar 

  2. Barry S, Ludbrook SB, Murrison E, Horgan CM (2000) Analysis of the alpha 4 beta 1 integrin osteopontin interaction. Exp Cell Res 258:342–351

    Article  PubMed  CAS  Google Scholar 

  3. Bogoyevitch MA (2006) The isoform-specific functions of the c-Jun N-terminal kinases (JNKs): differences revealed by gene targeting. BioEssays 28:923–934

    Article  PubMed  CAS  Google Scholar 

  4. Brown LF, Papadopoulos-Sergoiu A, Berse B, Manseau EJ, Tognazzi K, Perruzzi CA, Dvorak HF, Senger DR (1994) Osteopontin expression and distribution in human carcinomas. Am J Pathol 145:610–625

    PubMed  CAS  Google Scholar 

  5. Butterfield L, Storey B, Maas L, Heasley LE (1997) c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem 272:10110–10116

    Article  PubMed  CAS  Google Scholar 

  6. Chabas D, Sergio BE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R et al (2001) The influence of the proinflammatory cytokine osteopontin, on autoimmune demyelinating disease. Science 294:1731–1735

    Article  PubMed  CAS  Google Scholar 

  7. Chambers AF, Williams SM, Kerkvliet N, O’Malley FP, Harris JF, Casson AG (1996) Osteopontin expression in lung cancer. Lung Cancer 15:311–323

    Article  PubMed  CAS  Google Scholar 

  8. Cui J, Han S-Y, Wang C, Su W, Harshyne L, Holgado-Madruga M, Wong AJ (2006) C-Jun NH2-Terminal kinase 2α2 promotes the tumorigenicity of human glioblastoma cells. Cancer Res 66:10024–10031

    Article  PubMed  CAS  Google Scholar 

  9. Das R, Mahabeleshwar GH, Kundu GC (2003) Osteopontin stimulates cell motility and nuclear factor-κB mediated secretion of urokinase type plasminogen activator through phosphotidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J Biol Chem 278:28593–28606

    Article  PubMed  CAS  Google Scholar 

  10. Das R, Mahabeleshwar GH, Kundu GC (2004) Osteopontin induces AP-1 mediated secretion of urokinase type plasminogen activator through c-Src dependent epidermal growth factor receptor transactivation in breast cancer cells. J Biol Chem 279:11051–11064

    Article  PubMed  CAS  Google Scholar 

  11. Denhardt DT, Noda M (1998) Osteopontin expression and function: role in bone remodeling. J Cell Biochem Suppl 30–31:92–102

    Article  PubMed  Google Scholar 

  12. Ding Q, Stewart J, Prince CW, Chang PL, Trikha M, Han X, Grammer JR, Gladson CL (2002) Promotion of malignant astrocytoma cell migration by osteopontin expressed in the normal brain: differences in integrin signaling during cell adhesion to osteopontin versus vitronectin. Cancer Res 62:5336–5343

    PubMed  CAS  Google Scholar 

  13. Ellison JA, Barone FC, Feuerstein GZ (1999) Matrix remodeling after stroke. De novo expression of matrix proteins and integrin receptors. Ann NY Acad Sci 890:204–222

    Article  PubMed  CAS  Google Scholar 

  14. Fisher LW, Hawkins GR, Tuross N, Termine JD (1987) Purification and partial characterization of small proteoglycans I and II, bone sialoproteins I and II, and osteonectin from the mineral compartment of developing human bone. J Biol Chem 262:9702–9708

    PubMed  CAS  Google Scholar 

  15. Furger KA, Allan AL, Wilson SM, Hota C, Vantyghem SA, Postenka CO, Al-Katib W, Chambers AF, Tuck AB (2003) Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. Mol Cancer Res 1:810–819

    PubMed  CAS  Google Scholar 

  16. Hijiya N, Setoguchi M, Matsuura K, Higuchi Y, Akizuki S, Yamamoto S (1994) Cloning and characterization of the human osteopontin gene and its promoter. Biochem J 303:255–262

    PubMed  CAS  Google Scholar 

  17. Jain S, Chakraborty G, Kundu G (2006) The crucial role of cyclocoxygenase-2 in osteopontin-induced protein kinase C α/c-Src/IκB kinase α/β-dependent prostate tumor progression and angiogenesis. Cancer Res 66:6638–6645

    Article  PubMed  CAS  Google Scholar 

  18. Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, Yagita H et al (1999) CD44 variants but not CD44s cooperate with β1-containing integrins to permit cells to bind to osteopontin independently of arginine–glycine–aspartic acid, thereby stimulating cell motility and chemotaxis. Cancer Res 59:219–226

    PubMed  CAS  Google Scholar 

  19. Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA, Schwartz SM, Giachelli CM (1995) The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest 95:713–724

    Article  PubMed  CAS  Google Scholar 

  20. Lin YH, Yang-Yen HF (2001) The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J Biol Chem 276:46024–46030

    Article  PubMed  CAS  Google Scholar 

  21. Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes R (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13

    Article  PubMed  CAS  Google Scholar 

  22. Niino M, Kikuchi S, Fukazawa T, Yabe I, Tashiro K (2003) Genetic polymorphisms of osteopontin in association with multiple sclerosis in Japanese patients. J Neuroimmunol 136:125–129

    Article  PubMed  CAS  Google Scholar 

  23. O’Regan A, Berman JS (2000) Osteopontin: a key cytokine in cell-mediated and granulomatous inflammation. Int J Exp Pathol 81:373–390

    Article  PubMed  CAS  Google Scholar 

  24. Park M-J, Kim M-S, Park I-C, Kang H-S, Yoo H et al (2002) PTEN suppresses hyaluronic acid-induced matrix metalloproteinase-9 expression in U87MG glioblastoma cells through focal adhesion kinase dephosphorylation. Cancer Res 62:6318–6322

    PubMed  CAS  Google Scholar 

  25. Patarca R, Freeman GJ, Singh RP, Wei FY, Durfee T, Blattner F, Regnier DC, Kozak CA, Mock BA, Morse HC (1989) Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependant response associated with genetic resistance to bacterial infection. J Exp Med 170:145–161

    Article  PubMed  CAS  Google Scholar 

  26. Prince CW, Oosawa T, Butler WT, Tomana M, Bhown AS, Schrohenloher RE (1987) Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J Biol Chem 262:2900–2907

    PubMed  CAS  Google Scholar 

  27. Rangaswami H, Bulbule A, Kundu GC (2005) JNK1 differentially regulates osteopontin induced nuclear factor inducing kinase/MEKK1 dependent activating protein-1-mediated promatrix metalloproteinase-9 activation. J Biol Chem 279:19381–19392

    Article  CAS  Google Scholar 

  28. Rangaswami H, Bulbule J, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–86

    Article  PubMed  CAS  Google Scholar 

  29. Saitoh Y, Kuratsu J-I, Takeshima H, Yamamoto S, Ushio Y (1995) Expression of osteopontin in human glioma. Its correlation with the malignancy. Lab Invest 72:55–63

    PubMed  CAS  Google Scholar 

  30. Senger DR, Wirth DF, Hynes RO (1979) Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell 16:885–893

    Article  PubMed  CAS  Google Scholar 

  31. Shiraga H, Min W, VanDusen WJ, Clayman MD, Miner D, Terrell CH, Sherbotie JR, Foreman JW, Przysiecki C, Neilson EG et al (1992) Inhibition of calcium oxialate crystal growth in vitro by uropontin: another member of the aspartic acid-rich protein superfamily. Proc Natl Acad Sci U S A 89:426–430

    Article  PubMed  CAS  Google Scholar 

  32. Singhal H, Bautista S, Tonkin KS, O’Malley FP, Tuck AB, Chambers AF, Harris JF (1997) Elevated plasma osteopontin in metastatic breast cancer associated with increased tumor burden and decreased survival. Clin Cancer Res 3:605–611

    PubMed  CAS  Google Scholar 

  33. Tuck AB, O’Malley P, Singhal H, Tonkin KS, Harris JF, Bautista D, Chambers AF (1997) Osteopontin and p53 expression are associated with tumor progression in a case of synchronous, bilateral, invasive mammary carcinomas. Arch Pathol Lab Med 124:578–584

    Google Scholar 

  34. Tuck AB, Hota C, Wilson SM, Chambers AF (2003) Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene 22:1198–1205

    Article  PubMed  CAS  Google Scholar 

  35. Vogt M, Floris S, Killestein J, Knol DL, Smits M, Barkhof F, Polman CH, Nagelkerken L (2004) Osteopontin levels and increased disease activity in relapsing-remitting multiple sclerosis patients. J Neuroimmunol 155:155–160

    Article  PubMed  CAS  Google Scholar 

  36. Weber GF (2001) The metastasis gene osteopontin: a candidate target for cancer therapy. Biochem Biophys Acta 1552:61–85

    PubMed  CAS  Google Scholar 

  37. Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S, Saitoh Y, Yamakido M, Taooka Y, Sheppard D (1999) The integrin alpha 9 beta 1 bind a novel recognition sequence SVVYGLR in the thrombin cleaved amino terminal fragment of osteopontin. J Biol Chem 274:36328–36334

    Article  PubMed  CAS  Google Scholar 

  38. Zheng DO, Woodward AS, Tallini G, Languino LR (2000) Substrate specificity of α (v) β (3) integrin-mediated cell migration and phophatidylinositol 3-kinase/AKT pathway activation. J Biol Chem 275:24565–24574

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants #NS-36674-08, NS-3080011 and CA10373602 to R.H.M. F98 and U87 cells were provided by Dr. Steven M. Greenberg (Roswell Park Cancer Institute). We would like to thank Anita Zaremba for technical assistance with slice culture preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Selkirk.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selkirk, S.M., Morrow, J., Barone, T.A. et al. Elevation of osteopontin levels in brain tumor cells reduces burden and promotes survival through the inhibition of cell dispersal. J Neurooncol 86, 285–296 (2008). https://doi.org/10.1007/s11060-007-9477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9477-1

Keywords

Navigation