Skip to main content
Log in

Nonspecific immunotherapy with intratumoral lipopolysaccharide and zymosan A but not GM-CSF leads to an effective anti-tumor response in subcutaneous RG-2 gliomas

  • Lab Investigation-Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Nonspecific stimulation of cells of the immune system may be useful in generating an anti-tumor response for a variety of cancers and may work synergistically with currently available cytotoxic therapies. In this study we examined the response of syngeneic rat gliomas to treatment with several nonspecific stimulators of dendritic cells and macrophages alone or in combination with radiation therapy.

Experimental design

RG-2 gliomas were implanted subcutaneously and treated with intratumoral (IT) injections of the toll-like receptor (TLR) ligands lipopolysaccharide (LPS) and zymosan A (ZymA) and the cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). Combination treatment with IT LPS and single-fraction external beam radiotherapy (EBRT) was also evaluated.

Results

Treatment with IT LPS and ZymA delayed tumor growth compared to saline controls. Multiple doses of both substances were superior to single doses, and led to complete tumor regression in 71% (LPS) and 50% (ZymA) of animals. GM-CSF showed no anti-tumor effects in this study. Combinations of IT LPS and EBRT appeared to have a synergistic effect in delaying tumor growth. Rechallenge studies and IT LPS treatment of RG-2 tumors in nude rats suggested the importance of T cells in this treatment paradigm.

Conclusions

Direct IT treatment with the TLR ligands LPS and ZymA are effective in generating an anti-tumor response. These treatments may synergize with cytotoxic therapies such as EBRT, and appear to require T cells for a successful outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akman F, Cooper RA, Sen M, Tanriver Y, Kentli S (2002) Validation of the Medical Research Council and a newly developed prognostic index in patients with malignant glioma: how useful are prognostic indices in routine clinical practice? J Neurooncol 59:39–47

    Article  PubMed  Google Scholar 

  2. Basso U, Ermani M, Vastola F, Brandes AA (2002) Non-cytotoxic therapies for malignant gliomas. J Neurooncol 58:57–69

    Article  PubMed  Google Scholar 

  3. Nieder C, Grosu AL, Molls M (2000) A comparison of treatment results for recurrent malignant gliomas. Cancer Treat Rev 26:397–409

    Article  PubMed  CAS  Google Scholar 

  4. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46:957–961; discussion 961–952

    Article  PubMed  CAS  Google Scholar 

  5. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40:252–259

    Article  PubMed  Google Scholar 

  6. Kielian T, van Rooijen N, Hickey WF (2002) MCP-1 expression in CNS-1 astrocytoma cells: implications for macrophage infiltration into tumors in vivo. J Neurooncol 56:1–12

    Article  PubMed  Google Scholar 

  7. Morioka T, Baba T, Black KL, Streit WJ (1992) Immunophenotypic analysis of infiltrating leukocytes and microglia in an experimental rat glioma. Acta Neuropathol 83:590–597

    Article  PubMed  CAS  Google Scholar 

  8. Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB (1987) Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol (Berl) 74:269–277

    Article  CAS  Google Scholar 

  9. Huettner C, Paulus W, Roggendorf W (1995) Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 146:317–322

    PubMed  CAS  Google Scholar 

  10. Merlo A, Juretic A, Zuber M, Filgueira L, Luscher U, Caetano V, Ulrich J, Gratzl O, Heberer M, Spagnoli GC (1993) Cytokine gene expression in primary brain tumours, metastases and meningiomas suggests specific transcription patterns. Eur J Cancer 29A:2118–2125

    Article  PubMed  CAS  Google Scholar 

  11. Parney IF, Hao C, Petruk KC (2000) Glioma immunology and immunotherapy. Neurosurgery 46:778–791; discussion 791–772

    Article  PubMed  CAS  Google Scholar 

  12. Schneider J, Hofman FM, Apuzzo ML, Hinton DR (1992) Cytokines and immunoregulatory molecules in malignant glial neoplasms. J Neurosurg 77:265–273

    PubMed  CAS  Google Scholar 

  13. Weller M, Fontana A (1995) The failure of current immunotherapy for malignant glioma. Tumor-derived TGF-beta, T-cell apoptosis, and the immune privilege of the brain. Brain Res Brain Res Rev 21:128–151

    Article  PubMed  CAS  Google Scholar 

  14. Wischhusen J, Jung G, Radovanovic I, Beier C, Steinbach JP, Rimner A, Huang H, Schulz JB, Ohgaki H, Aguzzi A, Rammensee HG, Weller M (2002) Identification of CD70-mediated apoptosis of immune effector cells as a novel immune escape pathway of human glioblastoma. Cancer Res 62:2592–2599

    PubMed  CAS  Google Scholar 

  15. Giulian D, Baker TJ, Shih LC, Lachman LB (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164:594–604

    Article  PubMed  CAS  Google Scholar 

  16. Sawada M, Kondo N, Suzumura A, Marunouchi T (1989) Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 491:394–397

    Article  PubMed  CAS  Google Scholar 

  17. Dobrovolskaia MA, Vogel SN (2002) Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect 4:903–914

    Article  PubMed  CAS  Google Scholar 

  18. Williams MA, Kelsey SM, Newland AC (1999) GM-CSF and stimulation of monocyte/macrophage function in vivo relevance and in vitro observations. Eur J Cancer 35(Suppl 3):S18–S22

    Article  PubMed  CAS  Google Scholar 

  19. Young SH, Ye J, Frazer DG, Shi X, Castranova V (2001) Molecular mechanism of tumor necrosis factor-alpha production in 1→3-beta-glucan (zymosan)-activated macrophages. J Biol Chem 276:20781–20787

    Article  PubMed  CAS  Google Scholar 

  20. Miura T, Ohno N, Miura NN, Adachi Y, Shimada S, Yadomae T (1999) Antigen-specific response of murine immune system toward a yeast beta-glucan preparation, zymosan. FEMS Immunol Med Microbiol 24:131–139

    PubMed  CAS  Google Scholar 

  21. Murata J, Ricciardi-Castagnoli P, Dessous L’Eglise Mange P, Martin F, Juillerat-Jeanneret L (1997) Microglial cells induce cytotoxic effects toward colon carcinoma cells: measurement of tumor cytotoxicity with a gamma-glutamyl transpeptidase assay. Int J Cancer 70:169–174

    Article  PubMed  CAS  Google Scholar 

  22. Beutler B, Rietschel ET (2003) Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 3:169–176

    Article  PubMed  CAS  Google Scholar 

  23. Berendt MJ, North RJ, Kirstein DP (1978) The immunological basis of endotoxin-induced tumor regression. Requirement for T-cell-mediated immunity. J Exp Med 148:1550–1559

    Article  PubMed  CAS  Google Scholar 

  24. Goto S, Sakai S, Kera J, Suma Y, Soma GI, Takeuchi S (1996) Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol Immunother 42:255–261

    Article  PubMed  CAS  Google Scholar 

  25. Otto F, Schmid P, Mackensen A, Wehr U, Seiz A, Braun M, Galanos C, Mertelsmann R, Engelhardt R (1996) Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer. Eur J Cancer 32A:1712–1718

    Article  PubMed  CAS  Google Scholar 

  26. Shear MJ, Turner FC (1943) Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J Natl Cancer Inst 4:81–97

    CAS  Google Scholar 

  27. Engelhardt R, Mackensen A, Galanos C, Andreesen R (1990) Biological response to intravenously administered endotoxin in patients with advanced cancer. J Biol Response Mod 9:480–491

    PubMed  CAS  Google Scholar 

  28. Chicoine MR, Won EK, Zahner MC (2001) Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 48:607–614; discussion 614–605

    Article  PubMed  CAS  Google Scholar 

  29. Won EK, Zahner MC, Grant EA, Gore P, Chicoine MR (2003) Analysis of the antitumoral mechanisms of lipopolysaccharide against glioblastoma multiforme. Anticancer Drugs 14:457–466

    Article  PubMed  CAS  Google Scholar 

  30. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  31. Pistoia V (1991) Granulocyte-macrophage colony stimulating factor (GM-CSF); sources, targets and mechanism of action. Leukemia 5(Suppl 1):114–118

    PubMed  Google Scholar 

  32. Wallenfriedman MA, Conrad JA, DelaBarre L, Graupman PC, Lee G, Garwood M, Gregerson DS, Jean WC, Hall WA, Low WC (1999) Effects of continuous localized infusion of granulocyte-macrophage colony-stimulating factor and inoculations of irradiated glioma cells on tumor regression. J Neurosurg 90:1064–1071

    Article  PubMed  CAS  Google Scholar 

  33. Dranoff G (2002) GM-CSF-based cancer vaccines. Immunol Rev 188:147–154

    Article  PubMed  CAS  Google Scholar 

  34. Dranoff G (2003) GM-CSF-secreting melanoma vaccines. Oncogene 22:3188–3192

    Article  PubMed  CAS  Google Scholar 

  35. Reinisch W, Holub M, Katz A, Herneth A, Lichtenberger C, Schoniger-Hekele M, Waldhoer T, Oberhuber G, Ferenci P, Gangl A, Mueller C (2002) Prospective pilot study of recombinant granulocyte-macrophage colony-stimulating factor and interferon-gamma in patients with inoperable hepatocellular carcinoma. J Immunother 25:489–499

    Article  PubMed  CAS  Google Scholar 

  36. Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, Hodi FS, Jaklitsch M, Mentzer S, Swanson S, Lukanich J, Bueno R, Wain J, Mathisen D, Wright C, Fidias P, Donahue D, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Sugarbaker D, Mihm M, Dranoff G (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 21:624–630

    Article  PubMed  Google Scholar 

  37. Verra N, Jansen R, Groenewegen G, Mallo H, Kersten MJ, Bex A, Vyth-Dreese FA, Sein J, van de Kasteele W, Nooijen WJ, de Waal M, Horenblas S, de Gast GC (2003) Immunotherapy with concurrent subcutaneous GM-CSF, low-dose IL-2 and IFN-alpha in patients with progressive metastatic renal cell carcinoma. Br J Cancer 88:1346–1351

    Article  PubMed  CAS  Google Scholar 

  38. Barth RF (1998) Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 36:91–102

    Article  PubMed  CAS  Google Scholar 

  39. Hoeller C, Jansen B, Heere-Ress E, Pustelnik T, Mossbacher U, Schlagbauer-Wadl H, Wolff K, Pehamberger H (2001) Perilesional injection of r-GM-CSF in patients with cutaneous melanoma metastases. J Invest Dermatol 117:371–374

    Article  PubMed  CAS  Google Scholar 

  40. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  PubMed  CAS  Google Scholar 

  41. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305

    Article  PubMed  CAS  Google Scholar 

  42. Zeisberger E, Roth J (1998) Tolerance to pyrogens. Ann N Y Acad Sci 856:116–131

    Article  PubMed  CAS  Google Scholar 

  43. Yang Y, Huang CT, Huang X, Pardoll DM (2004) Persistent Toll-like receptor signals are required for reversal of regulatory T cell-mediated CD8 tolerance. Nat Immunol 5:508–515

    Article  PubMed  CAS  Google Scholar 

  44. Jiang H, Stewart CA, Fast DJ, Leu RW (1992) Tumor target-derived soluble factor synergizes with IFN-gamma and IL-2 to activate macrophages for tumor necrosis factor and nitric oxide production to mediate cytotoxicity of the same target. J Immunol 149:2137–2146

    PubMed  CAS  Google Scholar 

  45. Berendt MJ, North RJ (1980) T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. J Exp Med 151:69–80

    Article  PubMed  CAS  Google Scholar 

  46. Mason KA, Ariga H, Neal R, Valdecanas D, Hunter N, Krieg AM, Whisnant JK, Milas L (2005) Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 11:361–369

    PubMed  CAS  Google Scholar 

  47. Milas L, Mason KA, Ariga H, Hunter N, Neal R, Valdecanas D, Krieg AM, Whisnant JK (2004) CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res 64:5074–5077

    Article  PubMed  CAS  Google Scholar 

  48. Lake RA, Robinson BW (2005) Immunotherapy and chemotherapy—a practical partnership. Nat Rev Cancer 5:397–405

    Article  PubMed  CAS  Google Scholar 

  49. Ford AL, Goodsall AL, Hickey WF, Sedgwick JD (1995) Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol 154:4309–4321

    PubMed  CAS  Google Scholar 

  50. Carpentier AF, Xie J, Mokhtari K, Delattre JY (2000) Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 6:2469–2473

    PubMed  CAS  Google Scholar 

  51. Bowles AP Jr, Perkins E (1999) Long-term remission of malignant brain tumors after intracranial infection: a report of four cases. Neurosurgery 44:636–642; discussion 642–633

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the James S. McDonnell Douglas Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Mariani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariani, C.L., Rajon, D., Bova, F.J. et al. Nonspecific immunotherapy with intratumoral lipopolysaccharide and zymosan A but not GM-CSF leads to an effective anti-tumor response in subcutaneous RG-2 gliomas. J Neurooncol 85, 231–240 (2007). https://doi.org/10.1007/s11060-007-9415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-007-9415-2

Keywords

Navigation