Skip to main content
Log in

LRRC4 controls in vitro invasion of glioblastoma cells through inhibiting RPTP-zeta expression

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

LRRC4 (leucine rich repeat containing 4), a novel member of LRP (Leucine-rich repeat protein) superfamily, contains a conserved leucine-rich repeat (LRR) cassette and an immunoglobulin-like (IgC2) domain in its extracellular region. In the present study, we demonstrated that the N and C terminal LRR (LRRNT and LRRCT) are requisite for membrane and cytoplasm location of LRRC4 in Cos7 cells. We also suggested that RPTP-zeta (receptor-type protein tyrosine phosphatase) receptor is relevant to the invasion ability of gliomas cells, and its expression is inhibited by the reexpression of LRRC4. Our observations indicated that LRRC4 may be a negative regulator of the RPTP-zeta receptor, and contribute to suppressing the invasion ability of gliomas cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LRRC4:

Leucine rich repeat containing 4

LRR:

Leucine rich repeat

LRP:

Leucine-rich repeat proteins

LRRNT:

N-terminal LRR

LRRCT:

C-terminal LRR

OMgp:

The oligodendrocyte myelin glycoprotein

CRM1:

(Chromosome region maintenance)/exportin1

NES:

Nuclear export signal

LMB:

Leptomycin B

SLDT:

Scrape-loading and dye transfer

GJIC:

Gap junctional intercellular communication

RPTP:

Receptor-type protein tyrosine phosphatase

References

  1. Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    Article  PubMed  CAS  Google Scholar 

  2. Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732

    Article  PubMed  CAS  Google Scholar 

  3. Wang W, Yang Y, Li L, Shi Y (2003) Synleurin, a novel leucine-rich repeat protein that increases the intensity of pleiotropic cytokine responses. Biochem Biophys Res Commun 305:981–988

    Article  PubMed  CAS  Google Scholar 

  4. Darbinian N, Gallia GL, King J, Del Valle L, Johnson EM, Khalili K (2001) Growth inhibition of glioblastoma cells by human Pur(alpha). J Cell Physiol 189:334–340

    Article  PubMed  CAS  Google Scholar 

  5. Vourc’h P, Andres C (2004) Oligodendrocyte myelin glycoprotein (OMgp): evolution, structure and function. Brain Res Brain Res Rev 45:115–124

    Article  PubMed  CAS  Google Scholar 

  6. Kunapuli P, Chitta KS, Cowell JK (2003) Suppression of the cell proliferation and invasion phenotypes in glioma cells by the LGI1 gene. Oncogene 22:3985–3991

    Article  PubMed  CAS  Google Scholar 

  7. Kunapuli P, Kasyapa CS, Hawthom L, Cowell JK (2004) LGI1, a putative tumor metastasis suppressor gene, controls in vitro invasiveness and expression of matrix metalloproteinases in glioma cells through the ERK1/2 pathway. J Biol Chem 279:23151–23157

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Q, Wang J, Fan S, Wang L, Cao L, Tang K, Peng C, Li␣Z, Li W, Gan K, Liu Z, Li X, Shen S, Li G (2005) Expression and functional characterization of LRRC4, a novel brain-specific member of the LRR superfamily. FEBS Lett 579:3674–3682

    Article  PubMed  CAS  Google Scholar 

  9. Ma J, Zhou J, Fan S, Wang L, Li X, Yan Q, Zhou M, Liu H, Zhang Q, Zhou H, Gan K, Li Z, Peng C, Xiong W, Tan C, Shen S, Yang J, Li J, Li G (2005) Role of a novel EGF-like domain-containing gene NGX6 in cell adhesion modulation in nasopharyngeal carcinoma cells. Carcinogenesis 26:281–291

    Article  PubMed  CAS  Google Scholar 

  10. Watanabe D, Ushijima Y, Goshima F, Takakuwa H, Tomita Y, Nishiyama Y (2000) Identification of nuclear export signal in UL37 protein of Herpes Simplex Virus Type 2. Biochem Biophys Res Commun 276:1248–1254

    Article  PubMed  CAS  Google Scholar 

  11. Darryl A, León I, Jaume M (2003) Cànaves2. In silico study of breast cancer associate gene 3 using LION Target Engine™ and other tools. BioTechniques 35:2–8

    Google Scholar 

  12. Lu KV, Jong KA, Kim GY, Singh J, Dia EQ, Yoshimoto K, Wang MY, Cloughesy TF, Nelson SF, Mischel PS (2005) Differential induction of glioblastoma migration and growth by two forms of pleiotrophin. J Biol Chem 280:26953–26964

    Article  PubMed  CAS  Google Scholar 

  13. Wang JR, Qian J, Dong L, Li XL, Tan C, Li J, Zhang BC, Zhou J, Li GY (2002) Identification of LRRC4, a novel member of Leucine-rich repeat (LRR) superfamily, and its expression analysis in brain tumor. Prog Biochem Biophys 29:233–239

    CAS  Google Scholar 

  14. Gu W, Brodtkorb E, Steinlein OK (2002) LGI1 is mutated characterized by aphasic seizures. Ann Neurol 52:364–367

    Article  PubMed  CAS  Google Scholar 

  15. Schuster JM, Nelson PS (2000) Toll receptors: an expanding role in our understanding of human disease. J Leukoc Biol 67:767–773

    PubMed  CAS  Google Scholar 

  16. Aruga J, Mikoshiba K (2003) Identification and characterization of Slitrk, a novel neuronal transmembrane protein family controlling neurite outgrowth. Mol Cell Neurosci 24:117–129

    Article  PubMed  CAS  Google Scholar 

  17. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  PubMed  CAS  Google Scholar 

  18. Hamano S, Ohira M, Isogai E, Nakada K, Nakagawara A (2004) Identification of novel human neuronal leucine-rich repeat (hNLRR) family genes and inverse association of expression of Nbla10449/hNLRR-1and Nbla10677/hNLRR-3 with the prognosis of primary neuroblastomas. Int J Oncol 6:1457–1466

    Google Scholar 

  19. McBride KM, McDonald C, Reich NC (2000) Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor. EMBO J 19:6196–6206

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi N, Oohira A, Miyata S (2005) Synaptic localization of receptor-type protein tyrosine phosphatase zeta/beta in the cerebral and hippocampal neurons of adult rats. Brain Res 1050:163–169

    Article  PubMed  CAS  Google Scholar 

  21. Snyder SE, Li J, Schauwecher PE, McNeill TH, Salton SR (1996) Comparison of RPTP zeta/beta, phosphacan, and trkB mRNA expression in the developing and adult rat nervous system and induction of RPTP zeta/beta and phosphacan mRNA following brain injury. Brain Res Mol Brain Res 40:79–96

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Jianbo Yang (The university of Minnesota ) for reviewing this paper, and this work was supported by grants from the National Science Foundation of China (No. 30500192, 30330560, 30500444, 30500295) and Hunan Province Natural Sciences Foundations of China (No. 05JJ40059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyuan Li.

Additional information

Minghua Wu, Kai Gan, Chen Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, M., Gan, K., Huang, C. et al. LRRC4 controls in vitro invasion of glioblastoma cells through inhibiting RPTP-zeta expression. J Neurooncol 80, 133–142 (2006). https://doi.org/10.1007/s11060-006-9173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9173-6

Keywords

Navigation